From slq(2) to a Parabosonic Hopf Algebra
A Hopf algebra with four generators among which an involution (reflection) operator, is introduced. The defining relations involve commutators and anticommutators. The discrete series representations are developed. Designated by sl₋₁(2), this algebra encompasses the Lie superalgebra osp(1|2). It is...
Збережено в:
Дата: | 2011 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2011
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147403 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | From slq(2) to a Parabosonic Hopf Algebra / S. Tsujimoto, L. Vinet, A. Zhedanov // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 24 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-147403 |
---|---|
record_format |
dspace |
fulltext |
|
spelling |
irk-123456789-1474032019-02-15T01:24:11Z From slq(2) to a Parabosonic Hopf Algebra Tsujimoto, S. Vinet, L. Zhedanov, A. A Hopf algebra with four generators among which an involution (reflection) operator, is introduced. The defining relations involve commutators and anticommutators. The discrete series representations are developed. Designated by sl₋₁(2), this algebra encompasses the Lie superalgebra osp(1|2). It is obtained as a q=−1 limit of the slq(2) algebra and seen to be equivalent to the parabosonic oscillator algebra in irreducible representations. It possesses a noncocommutative coproduct. The Clebsch-Gordan coefficients (CGC) of sl₋₁(2) are obtained and expressed in terms of the dual −1 Hahn polynomials. A generating function for the CGC is derived using a Bargmann realization. 2011 Article From slq(2) to a Parabosonic Hopf Algebra / S. Tsujimoto, L. Vinet, A. Zhedanov // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 24 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 17B37; 17B80; 33C45 http://dspace.nbuv.gov.ua/handle/123456789/147403 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
A Hopf algebra with four generators among which an involution (reflection) operator, is introduced. The defining relations involve commutators and anticommutators. The discrete series representations are developed. Designated by sl₋₁(2), this algebra encompasses the Lie superalgebra osp(1|2). It is obtained as a q=−1 limit of the slq(2) algebra and seen to be equivalent to the parabosonic oscillator algebra in irreducible representations. It possesses a noncocommutative coproduct. The Clebsch-Gordan coefficients (CGC) of sl₋₁(2) are obtained and expressed in terms of the dual −1 Hahn polynomials. A generating function for the CGC is derived using a Bargmann realization. |
format |
Article |
author |
Tsujimoto, S. Vinet, L. Zhedanov, A. |
spellingShingle |
Tsujimoto, S. Vinet, L. Zhedanov, A. From slq(2) to a Parabosonic Hopf Algebra Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Tsujimoto, S. Vinet, L. Zhedanov, A. |
author_sort |
Tsujimoto, S. |
title |
From slq(2) to a Parabosonic Hopf Algebra |
title_short |
From slq(2) to a Parabosonic Hopf Algebra |
title_full |
From slq(2) to a Parabosonic Hopf Algebra |
title_fullStr |
From slq(2) to a Parabosonic Hopf Algebra |
title_full_unstemmed |
From slq(2) to a Parabosonic Hopf Algebra |
title_sort |
from slq(2) to a parabosonic hopf algebra |
publisher |
Інститут математики НАН України |
publishDate |
2011 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/147403 |
citation_txt |
From slq(2) to a Parabosonic Hopf Algebra / S. Tsujimoto, L. Vinet, A. Zhedanov // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 24 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT tsujimotos fromslq2toaparabosonichopfalgebra AT vinetl fromslq2toaparabosonichopfalgebra AT zhedanova fromslq2toaparabosonichopfalgebra |
first_indexed |
2025-07-11T02:01:27Z |
last_indexed |
2025-07-11T02:01:27Z |
_version_ |
1837314120823603200 |