From slq(2) to a Parabosonic Hopf Algebra

A Hopf algebra with four generators among which an involution (reflection) operator, is introduced. The defining relations involve commutators and anticommutators. The discrete series representations are developed. Designated by sl₋₁(2), this algebra encompasses the Lie superalgebra osp(1|2). It is...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2011
Автори: Tsujimoto, S., Vinet, L., Zhedanov, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2011
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147403
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:From slq(2) to a Parabosonic Hopf Algebra / S. Tsujimoto, L. Vinet, A. Zhedanov // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 24 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147403
record_format dspace
fulltext
spelling irk-123456789-1474032019-02-15T01:24:11Z From slq(2) to a Parabosonic Hopf Algebra Tsujimoto, S. Vinet, L. Zhedanov, A. A Hopf algebra with four generators among which an involution (reflection) operator, is introduced. The defining relations involve commutators and anticommutators. The discrete series representations are developed. Designated by sl₋₁(2), this algebra encompasses the Lie superalgebra osp(1|2). It is obtained as a q=−1 limit of the slq(2) algebra and seen to be equivalent to the parabosonic oscillator algebra in irreducible representations. It possesses a noncocommutative coproduct. The Clebsch-Gordan coefficients (CGC) of sl₋₁(2) are obtained and expressed in terms of the dual −1 Hahn polynomials. A generating function for the CGC is derived using a Bargmann realization. 2011 Article From slq(2) to a Parabosonic Hopf Algebra / S. Tsujimoto, L. Vinet, A. Zhedanov // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 24 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 17B37; 17B80; 33C45 http://dspace.nbuv.gov.ua/handle/123456789/147403 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description A Hopf algebra with four generators among which an involution (reflection) operator, is introduced. The defining relations involve commutators and anticommutators. The discrete series representations are developed. Designated by sl₋₁(2), this algebra encompasses the Lie superalgebra osp(1|2). It is obtained as a q=−1 limit of the slq(2) algebra and seen to be equivalent to the parabosonic oscillator algebra in irreducible representations. It possesses a noncocommutative coproduct. The Clebsch-Gordan coefficients (CGC) of sl₋₁(2) are obtained and expressed in terms of the dual −1 Hahn polynomials. A generating function for the CGC is derived using a Bargmann realization.
format Article
author Tsujimoto, S.
Vinet, L.
Zhedanov, A.
spellingShingle Tsujimoto, S.
Vinet, L.
Zhedanov, A.
From slq(2) to a Parabosonic Hopf Algebra
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Tsujimoto, S.
Vinet, L.
Zhedanov, A.
author_sort Tsujimoto, S.
title From slq(2) to a Parabosonic Hopf Algebra
title_short From slq(2) to a Parabosonic Hopf Algebra
title_full From slq(2) to a Parabosonic Hopf Algebra
title_fullStr From slq(2) to a Parabosonic Hopf Algebra
title_full_unstemmed From slq(2) to a Parabosonic Hopf Algebra
title_sort from slq(2) to a parabosonic hopf algebra
publisher Інститут математики НАН України
publishDate 2011
url http://dspace.nbuv.gov.ua/handle/123456789/147403
citation_txt From slq(2) to a Parabosonic Hopf Algebra / S. Tsujimoto, L. Vinet, A. Zhedanov // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 24 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT tsujimotos fromslq2toaparabosonichopfalgebra
AT vinetl fromslq2toaparabosonichopfalgebra
AT zhedanova fromslq2toaparabosonichopfalgebra
first_indexed 2025-07-11T02:01:27Z
last_indexed 2025-07-11T02:01:27Z
_version_ 1837314120823603200