Harmonic Analysis on Quantum Complex Hyperbolic Spaces

In this paper we obtain some results of harmonic analysis on quantum complex hyperbolic spaces. We introduce a quantum analog for the Laplace-Beltrami operator and its radial part. The latter appear to be second order q-difference operator, whose eigenfunctions are related to the Al-Salam-Chihara po...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2011
Hauptverfasser: Bershtein, O., Kolisnyk, Y.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2011
Schriftenreihe:Symmetry, Integrability and Geometry: Methods and Applications
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/147404
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Harmonic Analysis on Quantum Complex Hyperbolic Spaces / O. Bershtein, Y. Kolisnyk // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 21 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147404
record_format dspace
fulltext
spelling irk-123456789-1474042019-02-15T01:23:50Z Harmonic Analysis on Quantum Complex Hyperbolic Spaces Bershtein, O. Kolisnyk, Y. In this paper we obtain some results of harmonic analysis on quantum complex hyperbolic spaces. We introduce a quantum analog for the Laplace-Beltrami operator and its radial part. The latter appear to be second order q-difference operator, whose eigenfunctions are related to the Al-Salam-Chihara polynomials. We prove a Plancherel type theorem for it. 2011 Article Harmonic Analysis on Quantum Complex Hyperbolic Spaces / O. Bershtein, Y. Kolisnyk // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 21 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 17B37; 20G42; 81R50; 33D45; 42C10 DOI: http://dx.doi.org/10.3842/SIGMA.2011.078 http://dspace.nbuv.gov.ua/handle/123456789/147404 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In this paper we obtain some results of harmonic analysis on quantum complex hyperbolic spaces. We introduce a quantum analog for the Laplace-Beltrami operator and its radial part. The latter appear to be second order q-difference operator, whose eigenfunctions are related to the Al-Salam-Chihara polynomials. We prove a Plancherel type theorem for it.
format Article
author Bershtein, O.
Kolisnyk, Y.
spellingShingle Bershtein, O.
Kolisnyk, Y.
Harmonic Analysis on Quantum Complex Hyperbolic Spaces
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Bershtein, O.
Kolisnyk, Y.
author_sort Bershtein, O.
title Harmonic Analysis on Quantum Complex Hyperbolic Spaces
title_short Harmonic Analysis on Quantum Complex Hyperbolic Spaces
title_full Harmonic Analysis on Quantum Complex Hyperbolic Spaces
title_fullStr Harmonic Analysis on Quantum Complex Hyperbolic Spaces
title_full_unstemmed Harmonic Analysis on Quantum Complex Hyperbolic Spaces
title_sort harmonic analysis on quantum complex hyperbolic spaces
publisher Інститут математики НАН України
publishDate 2011
url http://dspace.nbuv.gov.ua/handle/123456789/147404
citation_txt Harmonic Analysis on Quantum Complex Hyperbolic Spaces / O. Bershtein, Y. Kolisnyk // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 21 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT bershteino harmonicanalysisonquantumcomplexhyperbolicspaces
AT kolisnyky harmonicanalysisonquantumcomplexhyperbolicspaces
first_indexed 2025-07-11T02:01:33Z
last_indexed 2025-07-11T02:01:33Z
_version_ 1837314126556168192