Haantjes Structures for the Jacobi-Calogero Model and the Benenti Systems

In the context of the theory of symplectic-Haantjes manifolds, we construct the Haantjes structures of generalized Stäckel systems and, as a particular case, of the quasi-bi-Hamiltonian systems. As an application, we recover the Haantjes manifolds for the rational Calogero model with three particles...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2016
Hauptverfasser: Tondo, G., Tempesta, P.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2016
Schriftenreihe:Symmetry, Integrability and Geometry: Methods and Applications
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/147418
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Haantjes Structures for the Jacobi-Calogero Model and the Benenti Systems / G. Tondo, P. Tempesta // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 44 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147418
record_format dspace
fulltext
spelling irk-123456789-1474182019-02-15T01:25:28Z Haantjes Structures for the Jacobi-Calogero Model and the Benenti Systems Tondo, G. Tempesta, P. In the context of the theory of symplectic-Haantjes manifolds, we construct the Haantjes structures of generalized Stäckel systems and, as a particular case, of the quasi-bi-Hamiltonian systems. As an application, we recover the Haantjes manifolds for the rational Calogero model with three particles and for the Benenti systems. 2016 Article Haantjes Structures for the Jacobi-Calogero Model and the Benenti Systems / G. Tondo, P. Tempesta // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 44 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 37J35; 70H06; 70H20; 53D05 DOI:10.3842/SIGMA.2016.023 http://dspace.nbuv.gov.ua/handle/123456789/147418 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In the context of the theory of symplectic-Haantjes manifolds, we construct the Haantjes structures of generalized Stäckel systems and, as a particular case, of the quasi-bi-Hamiltonian systems. As an application, we recover the Haantjes manifolds for the rational Calogero model with three particles and for the Benenti systems.
format Article
author Tondo, G.
Tempesta, P.
spellingShingle Tondo, G.
Tempesta, P.
Haantjes Structures for the Jacobi-Calogero Model and the Benenti Systems
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Tondo, G.
Tempesta, P.
author_sort Tondo, G.
title Haantjes Structures for the Jacobi-Calogero Model and the Benenti Systems
title_short Haantjes Structures for the Jacobi-Calogero Model and the Benenti Systems
title_full Haantjes Structures for the Jacobi-Calogero Model and the Benenti Systems
title_fullStr Haantjes Structures for the Jacobi-Calogero Model and the Benenti Systems
title_full_unstemmed Haantjes Structures for the Jacobi-Calogero Model and the Benenti Systems
title_sort haantjes structures for the jacobi-calogero model and the benenti systems
publisher Інститут математики НАН України
publishDate 2016
url http://dspace.nbuv.gov.ua/handle/123456789/147418
citation_txt Haantjes Structures for the Jacobi-Calogero Model and the Benenti Systems / G. Tondo, P. Tempesta // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 44 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT tondog haantjesstructuresforthejacobicalogeromodelandthebenentisystems
AT tempestap haantjesstructuresforthejacobicalogeromodelandthebenentisystems
first_indexed 2025-07-11T02:18:59Z
last_indexed 2025-07-11T02:18:59Z
_version_ 1837315224061870080