Orthogonal vs. Non-Orthogonal Reducibility of Matrix-Valued Measures
A matrix-valued measure Θ reduces to measures of smaller size if there exists a constant invertible matrix M such that MΘM∗ is block diagonal. Equivalently, the real vector space A of all matrices T such that TΘ(X)=Θ(X)T∗ for any Borel set X is non-trivial. If the subspace Ah of self-adjoints elemen...
Saved in:
Date: | 2016 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2016
|
Series: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/147427 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Orthogonal vs. Non-Orthogonal Reducibility of Matrix-Valued Measures / E. Koelink, P. Román // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 12 назв. — англ. |