Orthogonal vs. Non-Orthogonal Reducibility of Matrix-Valued Measures

A matrix-valued measure Θ reduces to measures of smaller size if there exists a constant invertible matrix M such that MΘM∗ is block diagonal. Equivalently, the real vector space A of all matrices T such that TΘ(X)=Θ(X)T∗ for any Borel set X is non-trivial. If the subspace Ah of self-adjoints elemen...

Full description

Saved in:
Bibliographic Details
Date:2016
Main Authors: Koelink, E., Román, P.
Format: Article
Language:English
Published: Інститут математики НАН України 2016
Series:Symmetry, Integrability and Geometry: Methods and Applications
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/147427
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Orthogonal vs. Non-Orthogonal Reducibility of Matrix-Valued Measures / E. Koelink, P. Román // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 12 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine