Bipolar Lawson Tau-Surfaces and Generalized Lawson Tau-Surfaces

Recently Penskoi [J. Geom. Anal. 25 (2015), 2645-2666, arXiv:1308.1628] generalized the well known two-parametric family of Lawson tau-surfaces τr,m minimally immersed in spheres to a three-parametric family Ta,b,c of tori and Klein bottles minimally immersed in spheres. It was remarked that this fa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2016
1. Verfasser: Causley, B.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2016
Schriftenreihe:Symmetry, Integrability and Geometry: Methods and Applications
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/147428
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Bipolar Lawson Tau-Surfaces and Generalized Lawson Tau-Surfaces / B. Causley // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 29 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Recently Penskoi [J. Geom. Anal. 25 (2015), 2645-2666, arXiv:1308.1628] generalized the well known two-parametric family of Lawson tau-surfaces τr,m minimally immersed in spheres to a three-parametric family Ta,b,c of tori and Klein bottles minimally immersed in spheres. It was remarked that this family includes surfaces carrying all extremal metrics for the first non-trivial eigenvalue of the Laplace-Beltrami operator on the torus and on the Klein bottle: the Clifford torus, the equilateral torus and surprisingly the bipolar Lawson Klein bottle τ¯₃,₁. In the present paper we show in Theorem 1 that this three-parametric family Ta,b,c includes in fact all bipolar Lawson tau-surfaces τ¯r,m. In Theorem 3 we show that no metric on generalized Lawson surfaces is maximal except for τ¯₃,₁ and the equilateral torus.