Quantum Curve and the First Painlevé Equation

We show that the topological recursion for the (semi-classical) spectral curve of the first Painlevé equation PI gives a WKB solution for the isomonodromy problem for PI. In other words, the isomonodromy system is a quantum curve in the sense of [Dumitrescu O., Mulase M., Lett. Math. Phys. 104 (2014...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2016
Hauptverfasser: Iwaki, K., Saenz, A.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2016
Schriftenreihe:Symmetry, Integrability and Geometry: Methods and Applications
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/147434
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Quantum Curve and the First Painlevé Equation / K. Iwaki, A. Saenz // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 36 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147434
record_format dspace
fulltext
spelling irk-123456789-1474342019-02-15T01:23:30Z Quantum Curve and the First Painlevé Equation Iwaki, K. Saenz, A. We show that the topological recursion for the (semi-classical) spectral curve of the first Painlevé equation PI gives a WKB solution for the isomonodromy problem for PI. In other words, the isomonodromy system is a quantum curve in the sense of [Dumitrescu O., Mulase M., Lett. Math. Phys. 104 (2014), 635-671, arXiv:1310.6022] and [Dumitrescu O., Mulase M., arXiv:1411.1023]. 2016 Article Quantum Curve and the First Painlevé Equation / K. Iwaki, A. Saenz // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 36 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 34M55; 81T45; 34M60; 34M56 DOI:10.3842/SIGMA.2016.011 http://dspace.nbuv.gov.ua/handle/123456789/147434 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We show that the topological recursion for the (semi-classical) spectral curve of the first Painlevé equation PI gives a WKB solution for the isomonodromy problem for PI. In other words, the isomonodromy system is a quantum curve in the sense of [Dumitrescu O., Mulase M., Lett. Math. Phys. 104 (2014), 635-671, arXiv:1310.6022] and [Dumitrescu O., Mulase M., arXiv:1411.1023].
format Article
author Iwaki, K.
Saenz, A.
spellingShingle Iwaki, K.
Saenz, A.
Quantum Curve and the First Painlevé Equation
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Iwaki, K.
Saenz, A.
author_sort Iwaki, K.
title Quantum Curve and the First Painlevé Equation
title_short Quantum Curve and the First Painlevé Equation
title_full Quantum Curve and the First Painlevé Equation
title_fullStr Quantum Curve and the First Painlevé Equation
title_full_unstemmed Quantum Curve and the First Painlevé Equation
title_sort quantum curve and the first painlevé equation
publisher Інститут математики НАН України
publishDate 2016
url http://dspace.nbuv.gov.ua/handle/123456789/147434
citation_txt Quantum Curve and the First Painlevé Equation / K. Iwaki, A. Saenz // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 36 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT iwakik quantumcurveandthefirstpainleveequation
AT saenza quantumcurveandthefirstpainleveequation
first_indexed 2025-07-11T02:04:31Z
last_indexed 2025-07-11T02:04:31Z
_version_ 1837314370830336000