Quantum Curve and the First Painlevé Equation
We show that the topological recursion for the (semi-classical) spectral curve of the first Painlevé equation PI gives a WKB solution for the isomonodromy problem for PI. In other words, the isomonodromy system is a quantum curve in the sense of [Dumitrescu O., Mulase M., Lett. Math. Phys. 104 (2014...
Gespeichert in:
Datum: | 2016 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут математики НАН України
2016
|
Schriftenreihe: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/147434 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Quantum Curve and the First Painlevé Equation / K. Iwaki, A. Saenz // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 36 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-147434 |
---|---|
record_format |
dspace |
fulltext |
|
spelling |
irk-123456789-1474342019-02-15T01:23:30Z Quantum Curve and the First Painlevé Equation Iwaki, K. Saenz, A. We show that the topological recursion for the (semi-classical) spectral curve of the first Painlevé equation PI gives a WKB solution for the isomonodromy problem for PI. In other words, the isomonodromy system is a quantum curve in the sense of [Dumitrescu O., Mulase M., Lett. Math. Phys. 104 (2014), 635-671, arXiv:1310.6022] and [Dumitrescu O., Mulase M., arXiv:1411.1023]. 2016 Article Quantum Curve and the First Painlevé Equation / K. Iwaki, A. Saenz // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 36 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 34M55; 81T45; 34M60; 34M56 DOI:10.3842/SIGMA.2016.011 http://dspace.nbuv.gov.ua/handle/123456789/147434 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We show that the topological recursion for the (semi-classical) spectral curve of the first Painlevé equation PI gives a WKB solution for the isomonodromy problem for PI. In other words, the isomonodromy system is a quantum curve in the sense of [Dumitrescu O., Mulase M., Lett. Math. Phys. 104 (2014), 635-671, arXiv:1310.6022] and [Dumitrescu O., Mulase M., arXiv:1411.1023]. |
format |
Article |
author |
Iwaki, K. Saenz, A. |
spellingShingle |
Iwaki, K. Saenz, A. Quantum Curve and the First Painlevé Equation Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Iwaki, K. Saenz, A. |
author_sort |
Iwaki, K. |
title |
Quantum Curve and the First Painlevé Equation |
title_short |
Quantum Curve and the First Painlevé Equation |
title_full |
Quantum Curve and the First Painlevé Equation |
title_fullStr |
Quantum Curve and the First Painlevé Equation |
title_full_unstemmed |
Quantum Curve and the First Painlevé Equation |
title_sort |
quantum curve and the first painlevé equation |
publisher |
Інститут математики НАН України |
publishDate |
2016 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/147434 |
citation_txt |
Quantum Curve and the First Painlevé Equation / K. Iwaki, A. Saenz // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 36 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT iwakik quantumcurveandthefirstpainleveequation AT saenza quantumcurveandthefirstpainleveequation |
first_indexed |
2025-07-11T02:04:31Z |
last_indexed |
2025-07-11T02:04:31Z |
_version_ |
1837314370830336000 |