Symmetries of the Continuous and Discrete Krichever-Novikov Equation

A symmetry classification is performed for a class of differential-difference equations depending on 9 parameters. A 6-parameter subclass of these equations is an integrable discretization of the Krichever-Novikov equation. The dimension n of the Lie point symmetry algebra satisfies 1≤n≤5. The highe...

Full description

Saved in:
Bibliographic Details
Date:2011
Main Authors: Levi, D., Winternitz, P., Yamilov, R.I.
Format: Article
Language:English
Published: Інститут математики НАН України 2011
Series:Symmetry, Integrability and Geometry: Methods and Applications
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/147657
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Symmetries of the Continuous and Discrete Krichever-Novikov Equation / D. Levi, P. Winternitz, R.I. Yamilov // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 31 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine

Similar Items