Electromagnetic filter for H⁻ separation from pig with metal hydride cathode
The paper proposes a design and method for calculating an electromagnetic filter for separation of negative hydrogen ions extracted in the longitudinal direction from the Penning discharge with a metal hydride cathode. The design of the filter was calculated on the basis of preliminary experimental...
Gespeichert in:
Datum: | 2018 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2018
|
Schriftenreihe: | Вопросы атомной науки и техники |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/147661 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Electromagnetic filter for H⁻ separation from pig with metal hydride cathode / I.N. Sereda, A.F. Tseluyko, D.L. Ryabchikov, Ya.O. Hrechko, A. Krupka // Вопросы атомной науки и техники. — 2018. — № 4. — С. 282-284. — Бібліогр.: 9 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-147661 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1476612019-02-16T01:23:22Z Electromagnetic filter for H⁻ separation from pig with metal hydride cathode Sereda, I.N. Tseluyko, A.F. Ryabchikov, D.L. Hrechko, Ya.O. Krupka, A. Приложения и технологии The paper proposes a design and method for calculating an electromagnetic filter for separation of negative hydrogen ions extracted in the longitudinal direction from the Penning discharge with a metal hydride cathode. The design of the filter was calculated on the basis of preliminary experimental data and analysis of the trajectory of charged particles, which were obtained by the numerical solution of motion equation. It has been built a model that allows to choose the optimal external parameters for effective separation of H⁻ ions and the interpretation of subsequent experiments. An experimental test of the model has been performed Пропонується конструкція і методика розрахунку електромагнітного фільтра, призначеного для сепарації негативних іонів водню, видобутих у поздовжньому напрямку з розряду Пеннінга з металогідридним катодом. Розрахунок конструкції фільтра проводився на підставі попередніх експериментальних даних та аналізу траєкторії заряджених частинок, які були розраховані шляхом чисельного рішення рівняння руху. Побудована модель, що дозволяє вибирати оптимальні зовнішні параметри для ефективної сепарації іонів Н⁻ і інтерпретації наступних експериментів. Проведена експериментальна перевірка працездатності побудованої моделі. Предлагается конструкция и методика расчета электромагнитного фильтра, предназначенного для сепарации отрицательных ионов водорода, извлекаемых в продольном направлении из разряда Пеннинга с металлогидридным катодом. Расчет конструкции фильтра проводился на основании предварительных экспериментальных данных и анализа траектории заряженных частиц, которые были рассчитаны путем численного решения уравнения движения. Построена модель, позволяющая выбирать оптимальные внешние параметры для эффективной сепарации ионов Н⁻ и интерпретации последующих экспериментов. Проведена экспериментальная проверка работоспособности построенной модели. 2018 Article Electromagnetic filter for H⁻ separation from pig with metal hydride cathode / I.N. Sereda, A.F. Tseluyko, D.L. Ryabchikov, Ya.O. Hrechko, A. Krupka // Вопросы атомной науки и техники. — 2018. — № 4. — С. 282-284. — Бібліогр.: 9 назв. — англ. 1562-6016 PACS: 52.80.Sm http://dspace.nbuv.gov.ua/handle/123456789/147661 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Приложения и технологии Приложения и технологии |
spellingShingle |
Приложения и технологии Приложения и технологии Sereda, I.N. Tseluyko, A.F. Ryabchikov, D.L. Hrechko, Ya.O. Krupka, A. Electromagnetic filter for H⁻ separation from pig with metal hydride cathode Вопросы атомной науки и техники |
description |
The paper proposes a design and method for calculating an electromagnetic filter for separation of negative hydrogen ions extracted in the longitudinal direction from the Penning discharge with a metal hydride cathode. The
design of the filter was calculated on the basis of preliminary experimental data and analysis of the trajectory of
charged particles, which were obtained by the numerical solution of motion equation. It has been built a model that
allows to choose the optimal external parameters for effective separation of H⁻ ions and the interpretation of subsequent experiments. An experimental test of the model has been performed |
format |
Article |
author |
Sereda, I.N. Tseluyko, A.F. Ryabchikov, D.L. Hrechko, Ya.O. Krupka, A. |
author_facet |
Sereda, I.N. Tseluyko, A.F. Ryabchikov, D.L. Hrechko, Ya.O. Krupka, A. |
author_sort |
Sereda, I.N. |
title |
Electromagnetic filter for H⁻ separation from pig with metal hydride cathode |
title_short |
Electromagnetic filter for H⁻ separation from pig with metal hydride cathode |
title_full |
Electromagnetic filter for H⁻ separation from pig with metal hydride cathode |
title_fullStr |
Electromagnetic filter for H⁻ separation from pig with metal hydride cathode |
title_full_unstemmed |
Electromagnetic filter for H⁻ separation from pig with metal hydride cathode |
title_sort |
electromagnetic filter for h⁻ separation from pig with metal hydride cathode |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2018 |
topic_facet |
Приложения и технологии |
url |
http://dspace.nbuv.gov.ua/handle/123456789/147661 |
citation_txt |
Electromagnetic filter for H⁻ separation from pig with metal hydride cathode / I.N. Sereda, A.F. Tseluyko, D.L. Ryabchikov, Ya.O. Hrechko, A. Krupka // Вопросы атомной науки и техники. — 2018. — № 4. — С. 282-284. — Бібліогр.: 9 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT seredain electromagneticfilterforhseparationfrompigwithmetalhydridecathode AT tseluykoaf electromagneticfilterforhseparationfrompigwithmetalhydridecathode AT ryabchikovdl electromagneticfilterforhseparationfrompigwithmetalhydridecathode AT hrechkoyao electromagneticfilterforhseparationfrompigwithmetalhydridecathode AT krupkaa electromagneticfilterforhseparationfrompigwithmetalhydridecathode |
first_indexed |
2025-07-11T02:35:41Z |
last_indexed |
2025-07-11T02:35:41Z |
_version_ |
1837316276054130688 |
fulltext |
ISSN 1562-6016. ВАНТ. 2018. №4(116) 282
APPLICATIONS AND TECHNOLOGY
ELECTROMAGNETIC FILTER FOR H– SEPARATION
FROM PIG WITH METAL HYDRIDE CATHODE
I.N. Sereda, A.F. Tseluyko, D.L. Ryabchikov, Ya.O. Hrechko, A. Krupka
V.N. Karazin Kharkiv National University, Kharkov, Ukraine
E-mail: igorsereda@karazin.ua
The paper proposes a design and method for calculating an electromagnetic filter for separation of negative hy-
drogen ions extracted in the longitudinal direction from the Penning discharge with a metal hydride cathode. The
design of the filter was calculated on the basis of preliminary experimental data and analysis of the trajectory of
charged particles, which were obtained by the numerical solution of motion equation. It has been built a model that
allows to choose the optimal external parameters for effective separation of H– ions and the interpretation of subse-
quent experiments. An experimental test of the model has been performed.
PACS: 52.80.Sm
INTRODUCTION
The application of a metal hydride cathode as a solid
hydrogen generator in Penning discharge led to a num-
ber of unexpected phenomena [1 - 5]. In particular, the
desorption of hydrogen from the metal hydride cathode
in the vibrationally / rotationally excited state has signif-
icantly changed the discharge conditions [1 - 3]. This
was appeared in the fact that in the longitudinal direc-
tion along with positively charged particles a negative
current was registered [1 - 3]. The authors showed that
the main part of this current consists of electrons
(ε ≈ 100 eV), which overcome the potential barrier near
the cathode due to the development of instability in the
anode layer. In addition to electrons energy collection, a
reduction in potential barrier near the cathodes was also
observed [1]. Moreover, the potential barrier near the
metal hydride cathode did not decrease as much as from
opposite side, which makes negative particles yielding
precisely from the side of the cathode-reflector.
On the other hand, the hydrogen H2
* desorbed from
the metal hydride cathode is already in vibrationally
excited state and is injected directly to the region, which
contains the greatest number of thermal electrons: to the
cathode region [2]. Thus, the efficiency of the formation
of H– ions by the mechanism of dissociative attachment
substantially increases. Traditionally, the extraction of
negative ions is made perpendicular to an external mag-
netic field through the aperture in an anode. However,
due to a change in the discharge properties when a metal
hydride cathode is using, it is opens the possibility for
longitudinal extraction of negative ions [6, 7]. The prob-
lem that arises in this case is the need to separate H–
ions from the total flux of particles yielded along the
external magnetic field. Taking into account the large
difference in the mass of hydrogen ion and electron, it is
convenient to make their separation by an inhomogene-
ous magnetic field in the region behind the cathode-
reflector. And the diverting of positive ions H2
+ is to
make by electric field. Taking into account the results of
the previous calculations [6] and experiments [7, 8], the
goal of this work was to improve the design of the de-
veloped filter for efficient separation of charged parti-
cles extracted from the Penning discharge with a metal
hydride cathode.
RESULTS AND DISCUSSION
A cathode unit (Fig. 1) consists a copper cathode-
reflector and a magnetic filter which includes a grid 1,
electrons current collector 2, a coil of magnetic field (4)
and a collector of negative ions 5. The copper cathode-
reflector 3 has got an aperture in the center 0.5 cm in
diameter for charged particles extraction.
The magnetic filter was set on the axis of the dis-
charge behind the aperture in the copper cathode-
reflector so, that all reverse magnetic field of the coil 4
was concentrated outside the discharge cell. For conven-
ience the distance between the cathode 3, the grid 1 and
the electron collectors 2 were the same and were 0.4 cm.
The ion collector 5 were at the distance of 1.8 cm from
the copper cathode-reflector 3.
Fig. 1. The cathode unit with electromagnetic filter
1 – retarding grid; 2 – electrons collector; 3 –copper
cathode-reflector with an aperture; 4 – coil of the filter
magnetic field; 5 – H– ion collector
The cathodes and collectors were under ground po-
tential. The grid (1) was supplied with +3 kV for posi-
tive particles removing. The whole electrodes system
was placed in external uniform longitudinal magnetic
field Hzo0 with intensity that could be changed in the
range of Hzo0 = 0…0.1 T.
The idea is to create reverse magnetic field in the
gap between the cathode 3 and the ion collector 5 to
divert electrons on the electron collector 2, but not im-
pact on H– ions being registered by ion collector 5.
+3kV
3
1
2
4
5
Icol
z
Hz0
6
Hzo0
cm
0 1 2 3 4
Hcoil
ISSN 1562-6016. ВАНТ. 2018. №4(116) 283
The main differences between the cathode unit and
those one considered earlier [6, 7] are primarily the re-
duction of its longitudinal dimensions. This was done in
order to place the ion collector 5 maximally close to the
cathode-reflector 3, and set the edge of the ion collector
5 at the zero-point magnetic field Hz0 (see Fig. 1). The
distances between the cathode 3, the grid 1 and the elec-
tron collector 2 were 0.4 cm. Apparently, this is the
minimum possible distance, since its further decrease
leads to an electrical breakdown between the grid and
the cathode, when discharge is working in the mode of
electron emission in the longitudinal direction. Reduc-
ing the distance between the ion collector 5 and the
cathode 3 will change the configuration of the coil 4 and
increase the transverse dimensions of the cathode unit.
Taking into account the configuration of the elec-
trodes, which ensures the registration of only the parax-
ial group of particles, the equation of motion can be
considerably simplified and the trajectories of the mo-
tion of charged particles can be considered only near the
axis in axially symmetric fields [9]:
01
82
1
2
0
2
0
2
0
2
0
22
2
=
−−
′
+
z
zo
o
z
o
o
Hr
HrrH
mc
q
dz
dr
dz
rd
ϕϕ
ϕ ,
where ( )zo ,0ϕϕ = – potential on the axis with respect to
the potential of particle creation point ( )00 ,0 zo ϕϕ = . (In
our case the potential of particle creation point is emitter
potential 00 =oϕ ); ( )zHH z ,00 = – magnetic field on
the axis at an arbitrary point; ( )00 ,0 zHH zo = – mag-
netic field on the axis at the emitter point z0.
Equation (1) was obtained under the assumption of a
homogeneous magnetic field (Hzo0 and Hz0 do not de-
pend on r) and for the case of slowly varying magnetic
and electric fields.
To solve equation, it is necessary to specify a non-
homogeneous magnetic and electric field in the gap.
The magnetic field profile in equation (1) is determined
by two parameters: ( )00 ,0 zHH zo = and
( )zHH z ,00 = . The firs one is an external magnetic
field created on the axis of the Penning cell in the ab-
sence of a filter coil. The second one is the profile of
inhomogeneous magnetic field on the axis in the cath-
ode-collector gap, which is created by the counter-
switching of the coils. The values of the parameter 0zoH
were fixed and selected at 600 Oe, 800 Oe, and
1000 Oe, basing on the conditions of the device. Pro-
files 0zH and ( )zo ,0ϕϕ = were calculated in the pro-
gram femm 4.0 basing on the geometric dimensions of
the cathode unit, the potentials of the electrodes and the
current flowing through the coil.
The solution of the paraxial equation of trajectories
(1) was carried out numerically by the Runge-Kutta
method of the fourth order with a fixed step of integra-
tion. The result of numerical solution is the dependence
of ( )zr – particle's position at a certain value of the lon-
gitudinal coordinate z in the cathode-collector gap. In
our calculations, the coordinate z = 0.0 cm corresponds
to the end of the cathode 3, z = 0.4 cm to the grid 1, and
z = 1.8 cm to the collector edge 5 in the center of the
filter coil 4 (see Fig. 1). These dependences in the form
of graphs are presented in Fig. 2. In the figures the pro-
files of total magnetic field, the filter coil and the ion
collector are presented. The position and dimensions of
the filter coil and the ion collector correspond to the
scale of the picture.
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.0
0.2
0.4
0.6
0.8
H - - ion collect
electron
trajectories
ion
trajectories
Hz0 / Hzo0 r, cm
z, cm
normalized
magnetic
field
ca
tho
de
-re
fle
cto
r
Fig. 2. The trajectories of electrons and ions as well
as the normalized profile of magnetic field in the gap
cathode (z = 0 cm)-collector (z = 1.8 cm)
One can see, that a inhomogeneous magnetic field in
the cathode-collector gap has little effect on the trajecto-
ry of H– ions, while the electron trajectories are noticea-
bly curved and do not fall on the collector at a zero val-
ue of total magnetic field Hz0.
One can see that the main part of electrons diverts to
the electrons collector 2 at a resultant zero magnetic
field on the collector edge Hz0 = 0. The rest of electrons
have an entrance radius r0 ≤ 0.08 cm. The magnetic
field in the gap has weak effect on them. Estimates
shown, that their current should be an order of magni-
tude smaller, than the total electron current.
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
-10
-8
-6
-4
-2
0
-10
-8
-6
-4
-2
0
current on
H - ion collector
current on
electron collector
I el.
co
l ,
µ
A
I io
n
co
l ,
µ
A
Hcoil / Hzo0
Fig. 3. Current on H– ion collector (Iion col) and on
electron collector (Iel. col) depending on Hcoil / Hzo0
An experimental check of the filter operation was
carried out using an electron gun, which simulated the
electron flow characteristic for the discharge cell [4].
The electron gun was set on the axis of the system in-
stead of the metal hydride cathode. It created a cylindri-
cal electron beam 1.2 cm in diameter with a current
10 mA and energy 100 eV. The experimental results are
shown in Fig. 3.
One can see that at Hcoil / Hzo0 = 1 the electron beam
is diverted almost completely on the electrons collector.
Only a small group of paraxial particles passes through
with a current by order of magnitude smaller than the
ISSN 1562-6016. ВАНТ. 2018. №4(116) 284
total current. Thus, the obtained data are in good agree-
ment with the calculation. Large errors are caused by
using a non-stabilized emission power source of the
electron gun.
CONCLUSIONS
So, as a result of numerous calculations, it was built
a model that allows to choose the best external parame-
ters for the efficient separation of H– ions from the axial
flow of charged particles. Good coincidence between
the experimental and the calculated data shown the pos-
sibility to apply the model for the interpretation of fol-
lowing experiments.
REFERENCES
1. I.V. Borgun, D.L. Ryabchikov, I.N. Sereda,
A.F. Tseluyko. Experimental simulation of metal-
hydride cathode working in Penning discharge //
Problems of Atomic Science and Technology. Series
“Plasma Phys”. 2013, № 1, p. 228-230.
2. A.V. Agarkov, D.L. Ryabchikov, I.N. Sereda,
A.F. Tseluyko. PIG with metal-hydride cathode un-
der ion-stimulated desorbtion of hydrogen // Prob-
lems of Atomic Science and Technology. Series
“Plasma Electronics and New Acceleration Meth-
ods”. 2013, № 4, p. 301-303.
3. I.V. Borgun, D.L. Ryabchikov, I.N. Sereda,
A.F. Tseluyko. PIG charged particle source with hy-
drogen supply from a metal-hydride cathode // Jour-
nal of Physics: Conference Series, 2014, v. 514,
012051.
4. I.N. Sereda, A.F. Tseluyko, D.L. Ryabchikov,
I.V. Borgun, M.O. Goncharenko. Influence of hy-
drogen supply on emissive characteristics of PIG
with metal-hydride cathode // Problems of Atomic
Science and Technology. Series “Plasma Phys”.
2014, № 6, p. 201-203.
5. I.N. Sereda, A.F. Tseluyko, D.L. Ryabchikov,
I.V. Babenko, Ya.O. Hrechko, V.A. Hetman. Plasma
parameters in PIG with metal-hydride cathode under
different ways of hydrogen supply // Problems of
Atomic Science and Technology. Series “Plasma
Electronics and New Acceleration Methods”. 2015,
№ 4, p. 342-344.
6. I.N. Sereda, A.F. Tseluyko, D.L. Ryabchikov,
I.V. Babenko, Ya.O. Hrechko, V.A. Hetman. Sepa-
ration of negative hydrogen ions from Penning dis-
charge with metalhydride cathode // Problems of
Atomic Science and Technology. Series “Plasma
Phys”. 2016, № 6, p. 241-243.
7. I. Sereda, A. Tseluyko, N. Azarenkov,
D. Ryabchikov, Ya. Hrechko. Effect of metal-
hydride hydrogen activation on longitudinal yield of
negative ions from PIG // International Journal of
Hydrogen Energy. 2017, v. 42/34, p. 21866-21870.
8. I.N. Sereda, A.F. Tseluyko, D.L. Ryabchikov,
I.V. Babenko, Ya.O. Hrechko, V.A. Hetman. Longi-
tudinal extraction of H– ions from Penning discharge
with metalhydride cathode // Problems of Atomic
Science and Technology. Series “Plasma Phys”.
2017, № 1, p. 183-186.
9. Ian G. Brown. The physics and technology of ion
sources; John Wiley and Sons: New York, 1989;
p. 85-87.
Article received 16.05.2018
ЭЛЕКТРОМАГНИТНЫЙ ФИЛЬТР ДЛЯ СЕПАРАЦИИ H– ИЗ РАЗРЯДА ПЕННИНГА
С МЕТАЛЛОГИДРИДНЫМ КАТОДОМ
І.Н. Середа, А.Ф. Целуйко, Д.Л. Рябчиков, Я.А. Гречко, А. Крупка
Предлагается конструкция и методика расчета электромагнитного фильтра, предназначенного для сепа-
рации отрицательных ионов водорода, извлекаемых в продольном направлении из разряда Пеннинга с ме-
таллогидридным катодом. Расчет конструкции фильтра проводился на основании предварительных экспе-
риментальных данных и анализа траектории заряженных частиц, которые были рассчитаны путем числен-
ного решения уравнения движения. Построена модель, позволяющая выбирать оптимальные внешние пара-
метры для эффективной сепарации ионов Н– и интерпретации последующих экспериментов. Проведена экс-
периментальная проверка работоспособности построенной модели.
ЕЛЕКТРОМАГНІТНИЙ ФІЛЬТР ДЛЯ СЕПАРАЦІЇ H– З РОЗРЯДУ ПЕННІНГА
З МЕТАЛОГІДРИДНИМ КАТОДОМ
І.М. Середа, О.Ф. Целуйко, Д.Л. Рябчиков, Я.О. Гречко, А. Крупка
Пропонується конструкція і методика розрахунку електромагнітного фільтра, призначеного для сепарації
негативних іонів водню, видобутих у поздовжньому напрямку з розряду Пеннінга з металогідридним като-
дом. Розрахунок конструкції фільтра проводився на підставі попередніх експериментальних даних та аналі-
зу траєкторії заряджених частинок, які були розраховані шляхом чисельного рішення рівняння руху. Побу-
дована модель, що дозволяє вибирати оптимальні зовнішні параметри для ефективної сепарації іонів Н– і
інтерпретації наступних експериментів. Проведена експериментальна перевірка працездатності побудованої
моделі.
|