The Asymptotic Expansion of Kummer Functions for Large Values of the α-Parameter, and Remarks on a Paper by Olver
It is shown that a known asymptotic expansion of the Kummer function U(a,b,z) as a tends to infinity is valid for z on the full Riemann surface of the logarithm. A corresponding result is also proved in a more general setting considered by Olver (1956).
Saved in:
Date: | 2016 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2016
|
Series: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/147735 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | The Asymptotic Expansion of Kummer Functions for Large Values of the α-Parameter, and Remarks on a Paper by Olver / H. Volkmer // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 9 назв. — англ. |