Are Orthogonal Separable Coordinates Really Classified?
We prove that the set of orthogonal separable coordinates on an arbitrary (pseudo-)Riemannian manifold carries a natural structure of a projective variety, equipped with an action of the isometry group. This leads us to propose a new, algebraic geometric approach to the classification of orthogonal...
Gespeichert in:
Datum: | 2016 |
---|---|
1. Verfasser: | Schöbel, K. |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут математики НАН України
2016
|
Schriftenreihe: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/147741 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Are Orthogonal Separable Coordinates Really Classified? / K. Schöbel // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 36 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
Orthogonal Separation of the Hamilton-Jacobi Equation on Spaces of Constant Curvature
von: Rajaratnam, K., et al.
Veröffentlicht: (2016) -
Women's literature: is it really "rosy"?
von: N. Herasymenko
Veröffentlicht: (2015) -
Are we really creative? As to innovation culture of the population of Ukraine
von: T. Petrushina
Veröffentlicht: (2013) -
Flatland Position-Dependent-Mass: Polar Coordinates, Separability and Exact Solvability
von: Mazharimousavi, H., et al.
Veröffentlicht: (2010) -
Approach to determination of efficient features and synthesis of optimal band-separating classifier for dactyl elements of sign language
von: Ju. V. Krak, et al.
Veröffentlicht: (2016)