Universal Lie Formulas for Higher Antibrackets
We prove that the hierarchy of higher antibrackets (aka higher Koszul brackets, aka Koszul braces) of a linear operator Δ on a commutative superalgebra can be defined by some universal formulas involving iterated Nijenhuis-Richardson brackets having as arguments Δ and the multiplication operators. A...
Gespeichert in:
Datum: | 2016 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут математики НАН України
2016
|
Schriftenreihe: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/147749 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Universal Lie Formulas for Higher Antibrackets / M. Manetti, G. Ricciardi // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 30 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineZusammenfassung: | We prove that the hierarchy of higher antibrackets (aka higher Koszul brackets, aka Koszul braces) of a linear operator Δ on a commutative superalgebra can be defined by some universal formulas involving iterated Nijenhuis-Richardson brackets having as arguments Δ and the multiplication operators. As a byproduct, we can immediately extend higher antibrackets to noncommutative algebras in a way preserving the validity of generalized Jacobi identities. |
---|