Universal Lie Formulas for Higher Antibrackets

We prove that the hierarchy of higher antibrackets (aka higher Koszul brackets, aka Koszul braces) of a linear operator Δ on a commutative superalgebra can be defined by some universal formulas involving iterated Nijenhuis-Richardson brackets having as arguments Δ and the multiplication operators. A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2016
Hauptverfasser: Manetti, M., Ricciardi, G.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2016
Schriftenreihe:Symmetry, Integrability and Geometry: Methods and Applications
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/147749
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Universal Lie Formulas for Higher Antibrackets / M. Manetti, G. Ricciardi // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 30 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147749
record_format dspace
fulltext
spelling irk-123456789-1477492019-02-16T01:26:18Z Universal Lie Formulas for Higher Antibrackets Manetti, M. Ricciardi, G. We prove that the hierarchy of higher antibrackets (aka higher Koszul brackets, aka Koszul braces) of a linear operator Δ on a commutative superalgebra can be defined by some universal formulas involving iterated Nijenhuis-Richardson brackets having as arguments Δ and the multiplication operators. As a byproduct, we can immediately extend higher antibrackets to noncommutative algebras in a way preserving the validity of generalized Jacobi identities. 2016 Article Universal Lie Formulas for Higher Antibrackets / M. Manetti, G. Ricciardi // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 30 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 17B60; 17B70 DOI:10.3842/SIGMA.2016.053 http://dspace.nbuv.gov.ua/handle/123456789/147749 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We prove that the hierarchy of higher antibrackets (aka higher Koszul brackets, aka Koszul braces) of a linear operator Δ on a commutative superalgebra can be defined by some universal formulas involving iterated Nijenhuis-Richardson brackets having as arguments Δ and the multiplication operators. As a byproduct, we can immediately extend higher antibrackets to noncommutative algebras in a way preserving the validity of generalized Jacobi identities.
format Article
author Manetti, M.
Ricciardi, G.
spellingShingle Manetti, M.
Ricciardi, G.
Universal Lie Formulas for Higher Antibrackets
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Manetti, M.
Ricciardi, G.
author_sort Manetti, M.
title Universal Lie Formulas for Higher Antibrackets
title_short Universal Lie Formulas for Higher Antibrackets
title_full Universal Lie Formulas for Higher Antibrackets
title_fullStr Universal Lie Formulas for Higher Antibrackets
title_full_unstemmed Universal Lie Formulas for Higher Antibrackets
title_sort universal lie formulas for higher antibrackets
publisher Інститут математики НАН України
publishDate 2016
url http://dspace.nbuv.gov.ua/handle/123456789/147749
citation_txt Universal Lie Formulas for Higher Antibrackets / M. Manetti, G. Ricciardi // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 30 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT manettim universallieformulasforhigherantibrackets
AT ricciardig universallieformulasforhigherantibrackets
first_indexed 2025-07-11T02:46:02Z
last_indexed 2025-07-11T02:46:02Z
_version_ 1837316928530546688