Universal Lie Formulas for Higher Antibrackets
We prove that the hierarchy of higher antibrackets (aka higher Koszul brackets, aka Koszul braces) of a linear operator Δ on a commutative superalgebra can be defined by some universal formulas involving iterated Nijenhuis-Richardson brackets having as arguments Δ and the multiplication operators. A...
Saved in:
Date: | 2016 |
---|---|
Main Authors: | Manetti, M., Ricciardi, G. |
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2016
|
Series: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/147749 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Universal Lie Formulas for Higher Antibrackets / M. Manetti, G. Ricciardi // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 30 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
Exponential Formulas and Lie Algebra Type Star Products
by: Meljanac, S., et al.
Published: (2012) -
Reduction of Symplectic Lie Algebroids by a Lie Subalgebroid and a Symmetry Lie Group
by: Iglesias, D., et al.
Published: (2007) -
Parallelisms & Lie Connections
by: Blázquez-Sanz, D., et al.
Published: (2017) -
The Ukrainian Formula for Innovation
by: O. F. Morozov
Published: (2014) -
Leibniz Algebras and Lie Algebras
by: Mason, G., et al.
Published: (2013)