From Principal Series to Finite-Dimensional Solutions of the Yang-Baxter Equation
We start from known solutions of the Yang-Baxter equation with a spectral parameter defined on the tensor product of two infinite-dimensional principal series representations of the group SL(2,C) or Faddeev's modular double. Then we describe its restriction to an irreducible finite-dimensional...
Gespeichert in:
Datum: | 2016 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут математики НАН України
2016
|
Schriftenreihe: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/147757 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | From Principal Series to Finite-Dimensional Solutions of the Yang-Baxter Equation / D. Chicherin, S.E. Derkachov, V.P. Spiridonov // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 43 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-147757 |
---|---|
record_format |
dspace |
fulltext |
|
spelling |
irk-123456789-1477572019-02-16T01:25:32Z From Principal Series to Finite-Dimensional Solutions of the Yang-Baxter Equation Chicherin, D. Derkachov, S.E. Spiridonov, V.P. We start from known solutions of the Yang-Baxter equation with a spectral parameter defined on the tensor product of two infinite-dimensional principal series representations of the group SL(2,C) or Faddeev's modular double. Then we describe its restriction to an irreducible finite-dimensional representation in one or both spaces. In this way we obtain very simple explicit formulas embracing rational and trigonometric finite-dimensional solutions of the Yang-Baxter equation. Finally, we construct these finite-dimensional solutions by means of the fusion procedure and find a nice agreement between two approaches. 2016 Article From Principal Series to Finite-Dimensional Solutions of the Yang-Baxter Equation / D. Chicherin, S.E. Derkachov, V.P. Spiridonov // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 43 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 81R50; 82B23; 33D05 DOI:10.3842/SIGMA.2016.028 http://dspace.nbuv.gov.ua/handle/123456789/147757 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We start from known solutions of the Yang-Baxter equation with a spectral parameter defined on the tensor product of two infinite-dimensional principal series representations of the group SL(2,C) or Faddeev's modular double. Then we describe its restriction to an irreducible finite-dimensional representation in one or both spaces. In this way we obtain very simple explicit formulas embracing rational and trigonometric finite-dimensional solutions of the Yang-Baxter equation. Finally, we construct these finite-dimensional solutions by means of the fusion procedure and find a nice agreement between two approaches. |
format |
Article |
author |
Chicherin, D. Derkachov, S.E. Spiridonov, V.P. |
spellingShingle |
Chicherin, D. Derkachov, S.E. Spiridonov, V.P. From Principal Series to Finite-Dimensional Solutions of the Yang-Baxter Equation Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Chicherin, D. Derkachov, S.E. Spiridonov, V.P. |
author_sort |
Chicherin, D. |
title |
From Principal Series to Finite-Dimensional Solutions of the Yang-Baxter Equation |
title_short |
From Principal Series to Finite-Dimensional Solutions of the Yang-Baxter Equation |
title_full |
From Principal Series to Finite-Dimensional Solutions of the Yang-Baxter Equation |
title_fullStr |
From Principal Series to Finite-Dimensional Solutions of the Yang-Baxter Equation |
title_full_unstemmed |
From Principal Series to Finite-Dimensional Solutions of the Yang-Baxter Equation |
title_sort |
from principal series to finite-dimensional solutions of the yang-baxter equation |
publisher |
Інститут математики НАН України |
publishDate |
2016 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/147757 |
citation_txt |
From Principal Series to Finite-Dimensional Solutions of the Yang-Baxter Equation / D. Chicherin, S.E. Derkachov, V.P. Spiridonov // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 43 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT chicherind fromprincipalseriestofinitedimensionalsolutionsoftheyangbaxterequation AT derkachovse fromprincipalseriestofinitedimensionalsolutionsoftheyangbaxterequation AT spiridonovvp fromprincipalseriestofinitedimensionalsolutionsoftheyangbaxterequation |
first_indexed |
2025-07-11T02:46:47Z |
last_indexed |
2025-07-11T02:46:47Z |
_version_ |
1837316975193227264 |