Symmetries of Lorentzian Three-Manifolds with Recurrent Curvature

Locally homogeneous Lorentzian three-manifolds with recurrect curvature are special examples of Walker manifolds, that is, they admit a parallel null vector field. We obtain a full classification of the symmetries of these spaces, with particular regard to symmetries related to their curvature: Ricc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2016
Hauptverfasser: Calvaruso, G., Zaeim, A.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2016
Schriftenreihe:Symmetry, Integrability and Geometry: Methods and Applications
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/147760
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Symmetries of Lorentzian Three-Manifolds with Recurrent Curvature / G. Calvaruso, A. Zaeim // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 23 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147760
record_format dspace
fulltext
spelling irk-123456789-1477602019-02-16T01:26:10Z Symmetries of Lorentzian Three-Manifolds with Recurrent Curvature Calvaruso, G. Zaeim, A. Locally homogeneous Lorentzian three-manifolds with recurrect curvature are special examples of Walker manifolds, that is, they admit a parallel null vector field. We obtain a full classification of the symmetries of these spaces, with particular regard to symmetries related to their curvature: Ricci and matter collineations, curvature and Weyl collineations. Several results are given for the broader class of three-dimensional Walker manifolds. 2016 Article Symmetries of Lorentzian Three-Manifolds with Recurrent Curvature / G. Calvaruso, A. Zaeim // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 23 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 53C50; 53B30 DOI:10.3842/SIGMA.2016.063 http://dspace.nbuv.gov.ua/handle/123456789/147760 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Locally homogeneous Lorentzian three-manifolds with recurrect curvature are special examples of Walker manifolds, that is, they admit a parallel null vector field. We obtain a full classification of the symmetries of these spaces, with particular regard to symmetries related to their curvature: Ricci and matter collineations, curvature and Weyl collineations. Several results are given for the broader class of three-dimensional Walker manifolds.
format Article
author Calvaruso, G.
Zaeim, A.
spellingShingle Calvaruso, G.
Zaeim, A.
Symmetries of Lorentzian Three-Manifolds with Recurrent Curvature
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Calvaruso, G.
Zaeim, A.
author_sort Calvaruso, G.
title Symmetries of Lorentzian Three-Manifolds with Recurrent Curvature
title_short Symmetries of Lorentzian Three-Manifolds with Recurrent Curvature
title_full Symmetries of Lorentzian Three-Manifolds with Recurrent Curvature
title_fullStr Symmetries of Lorentzian Three-Manifolds with Recurrent Curvature
title_full_unstemmed Symmetries of Lorentzian Three-Manifolds with Recurrent Curvature
title_sort symmetries of lorentzian three-manifolds with recurrent curvature
publisher Інститут математики НАН України
publishDate 2016
url http://dspace.nbuv.gov.ua/handle/123456789/147760
citation_txt Symmetries of Lorentzian Three-Manifolds with Recurrent Curvature / G. Calvaruso, A. Zaeim // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 23 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT calvarusog symmetriesoflorentzianthreemanifoldswithrecurrentcurvature
AT zaeima symmetriesoflorentzianthreemanifoldswithrecurrentcurvature
first_indexed 2025-07-11T02:47:03Z
last_indexed 2025-07-11T02:47:03Z
_version_ 1837316991312986112