Lie Algebroids in Classical Mechanics and Optimal Control
We review some recent results on the theory of Lagrangian systems on Lie algebroids. In particular we consider the symplectic and variational formalism and we study reduction. Finally we also consider optimal control systems on Lie algebroids and we show how to reduce Pontryagin maximum principle.
Gespeichert in:
Datum: | 2007 |
---|---|
1. Verfasser: | Martínez, E. |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут математики НАН України
2007
|
Schriftenreihe: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/147813 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Lie Algebroids in Classical Mechanics and Optimal Control / E. Martínez // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 25 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
Reduction of Symplectic Lie Algebroids by a Lie Subalgebroid and a Symmetry Lie Group
von: Iglesias, D., et al.
Veröffentlicht: (2007) -
On Lie Algebroids and Poisson Algebras
von: García-Beltrán, D., et al.
Veröffentlicht: (2012) -
Cartan Connections and Lie Algebroids
von: Crampin, M.
Veröffentlicht: (2009) -
Lie Algebroids in the Loday-Pirashvili Category
von: Rovi, A.
Veröffentlicht: (2015) -
Deformation Quantization of Poisson Structures Associated to Lie Algebroids
von: Neumaier, N., et al.
Veröffentlicht: (2009)