A Note on the Rotationally Symmetric SO(4) Euler Rigid Body

We consider an SO(4) Euler rigid body with two 'inertia momenta' coinciding. We study it from the point of view of bihamiltonian geometry. We show how to algebraically integrate it by means of the method of separation of variables.

Збережено в:
Бібліографічні деталі
Дата:2007
Автор: Falqui, G.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2007
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147829
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:A Note on the Rotationally Symmetric SO(4) Euler Rigid Body / G. Falqui // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 27 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147829
record_format dspace
fulltext
spelling irk-123456789-1478292019-02-17T01:24:46Z A Note on the Rotationally Symmetric SO(4) Euler Rigid Body Falqui, G. We consider an SO(4) Euler rigid body with two 'inertia momenta' coinciding. We study it from the point of view of bihamiltonian geometry. We show how to algebraically integrate it by means of the method of separation of variables. 2007 Article A Note on the Rotationally Symmetric SO(4) Euler Rigid Body / G. Falqui // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 27 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 37K10; 70H20; 14H70 http://dspace.nbuv.gov.ua/handle/123456789/147829 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We consider an SO(4) Euler rigid body with two 'inertia momenta' coinciding. We study it from the point of view of bihamiltonian geometry. We show how to algebraically integrate it by means of the method of separation of variables.
format Article
author Falqui, G.
spellingShingle Falqui, G.
A Note on the Rotationally Symmetric SO(4) Euler Rigid Body
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Falqui, G.
author_sort Falqui, G.
title A Note on the Rotationally Symmetric SO(4) Euler Rigid Body
title_short A Note on the Rotationally Symmetric SO(4) Euler Rigid Body
title_full A Note on the Rotationally Symmetric SO(4) Euler Rigid Body
title_fullStr A Note on the Rotationally Symmetric SO(4) Euler Rigid Body
title_full_unstemmed A Note on the Rotationally Symmetric SO(4) Euler Rigid Body
title_sort note on the rotationally symmetric so(4) euler rigid body
publisher Інститут математики НАН України
publishDate 2007
url http://dspace.nbuv.gov.ua/handle/123456789/147829
citation_txt A Note on the Rotationally Symmetric SO(4) Euler Rigid Body / G. Falqui // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 27 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT falquig anoteontherotationallysymmetricso4eulerrigidbody
AT falquig noteontherotationallysymmetricso4eulerrigidbody
first_indexed 2025-07-11T02:55:22Z
last_indexed 2025-07-11T02:55:22Z
_version_ 1837317569725333504