A Note on the Rotationally Symmetric SO(4) Euler Rigid Body
We consider an SO(4) Euler rigid body with two 'inertia momenta' coinciding. We study it from the point of view of bihamiltonian geometry. We show how to algebraically integrate it by means of the method of separation of variables.
Збережено в:
Дата: | 2007 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2007
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147829 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | A Note on the Rotationally Symmetric SO(4) Euler Rigid Body / G. Falqui // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 27 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-147829 |
---|---|
record_format |
dspace |
fulltext |
|
spelling |
irk-123456789-1478292019-02-17T01:24:46Z A Note on the Rotationally Symmetric SO(4) Euler Rigid Body Falqui, G. We consider an SO(4) Euler rigid body with two 'inertia momenta' coinciding. We study it from the point of view of bihamiltonian geometry. We show how to algebraically integrate it by means of the method of separation of variables. 2007 Article A Note on the Rotationally Symmetric SO(4) Euler Rigid Body / G. Falqui // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 27 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 37K10; 70H20; 14H70 http://dspace.nbuv.gov.ua/handle/123456789/147829 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We consider an SO(4) Euler rigid body with two 'inertia momenta' coinciding. We study it from the point of view of bihamiltonian geometry. We show how to algebraically integrate it by means of the method of separation of variables. |
format |
Article |
author |
Falqui, G. |
spellingShingle |
Falqui, G. A Note on the Rotationally Symmetric SO(4) Euler Rigid Body Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Falqui, G. |
author_sort |
Falqui, G. |
title |
A Note on the Rotationally Symmetric SO(4) Euler Rigid Body |
title_short |
A Note on the Rotationally Symmetric SO(4) Euler Rigid Body |
title_full |
A Note on the Rotationally Symmetric SO(4) Euler Rigid Body |
title_fullStr |
A Note on the Rotationally Symmetric SO(4) Euler Rigid Body |
title_full_unstemmed |
A Note on the Rotationally Symmetric SO(4) Euler Rigid Body |
title_sort |
note on the rotationally symmetric so(4) euler rigid body |
publisher |
Інститут математики НАН України |
publishDate |
2007 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/147829 |
citation_txt |
A Note on the Rotationally Symmetric SO(4) Euler Rigid Body / G. Falqui // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 27 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT falquig anoteontherotationallysymmetricso4eulerrigidbody AT falquig noteontherotationallysymmetricso4eulerrigidbody |
first_indexed |
2025-07-11T02:55:22Z |
last_indexed |
2025-07-11T02:55:22Z |
_version_ |
1837317569725333504 |