A Note on the Rotationally Symmetric SO(4) Euler Rigid Body
We consider an SO(4) Euler rigid body with two 'inertia momenta' coinciding. We study it from the point of view of bihamiltonian geometry. We show how to algebraically integrate it by means of the method of separation of variables.
Gespeichert in:
Datum: | 2007 |
---|---|
1. Verfasser: | Falqui, G. |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут математики НАН України
2007
|
Schriftenreihe: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/147829 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | A Note on the Rotationally Symmetric SO(4) Euler Rigid Body / G. Falqui // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 27 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
A note on variational formalism for sloshing with rotational flows in a rigid tank with an unprescribed motion
von: I. A. Lukovsky, et al.
Veröffentlicht: (2021) -
Hamiltonian dynamics of a symmetric top in external axially symmetric fields. Magnetic confinement of a rigid body
von: S. S. Zub
Veröffentlicht: (2018) -
An Optimal Braking of Rotations of Non-symmetric Body in a Resistant Medium
von: A. L. Rachinskaja, et al.
Veröffentlicht: (2018) -
A new solution to the problem of motion of two spherically symmetric rigid bodies connected by a nonholonomic hinge
von: M. E. Lesina, et al.
Veröffentlicht: (2014) -
Synthesis of time-optimal three-dimensional rotation of spacecraft using rotational motion of equation of rigid body at Rodrigues–Hamilton parameters
von: N. V. Efimenko
Veröffentlicht: (2017)