Large N Limits in Tensor Models: Towards More Universality Classes of Colored Triangulations in Dimension d ≥ 2
We review an approach which aims at studying discrete (pseudo-)manifolds in dimension d≥2 and called random tensor models. More specifically, we insist on generalizing the two-dimensional notion of p-angulations to higher dimensions. To do so, we consider families of triangulations built out of simp...
Gespeichert in:
Datum: | 2016 |
---|---|
1. Verfasser: | Bonzom, V. |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут математики НАН України
2016
|
Schriftenreihe: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/147839 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Large N Limits in Tensor Models: Towards More Universality Classes of Colored Triangulations in Dimension d ≥ 2 / V. Bonzom // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 49 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
Colored Tensor Models - a Review
von: Gurau, R., et al.
Veröffentlicht: (2012) -
Nonstandard additively finite triangulated categories of Calabi-Yau dimension one in characteristic 3
von: Bialkowski, J., et al.
Veröffentlicht: (2007) -
Nonstandard additively finite triangulated categories of Calabi-Yau dimension one in characteristic 3
von: Bialkowski, Jerzy, et al.
Veröffentlicht: (2018) -
Emergent universal critical behavior of the 2D N-color Ashkin-Teller model in the presence of correlated disorder
von: Dudka, M., et al.
Veröffentlicht: (2017) -
Simple algorithm for inequality for planar triangulation
von: V. B. Pavlenko
Veröffentlicht: (2014)