On Time Correlations for KPZ Growth in One Dimension
Time correlations for KPZ growth in 1+1 dimensions are reconsidered. We discuss flat, curved, and stationary initial conditions and are interested in the covariance of the height as a function of time at a fixed point on the substrate. In each case the power laws of the covariance for short and long...
Gespeichert in:
Datum: | 2016 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут математики НАН України
2016
|
Schriftenreihe: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/147840 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | On Time Correlations for KPZ Growth in One Dimension / P.L. Ferrari, H. Spohn // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 50 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineZusammenfassung: | Time correlations for KPZ growth in 1+1 dimensions are reconsidered. We discuss flat, curved, and stationary initial conditions and are interested in the covariance of the height as a function of time at a fixed point on the substrate. In each case the power laws of the covariance for short and long times are obtained. They are derived from a variational problem involving two independent Airy processes. For stationary initial conditions we derive an exact formula for the stationary covariance with two approaches: (1) the variational problem and (2) deriving the covariance of the time-integrated current at the origin for the corresponding driven lattice gas. In the stationary case we also derive the large time behavior for the covariance of the height gradients. |
---|