An Update on Local Universality Limits for Correlation Functions Generated by Unitary Ensembles
We survey the current status of universality limits for m-point correlation functions in the bulk and at the edge for unitary ensembles, primarily when the limiting kernels are Airy, Bessel, or Sine kernels. In particular, we consider underlying measures on compact intervals, and fixed and varying e...
Gespeichert in:
Datum: | 2016 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут математики НАН України
2016
|
Schriftenreihe: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/147843 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | An Update on Local Universality Limits for Correlation Functions Generated by Unitary Ensembles / D.S. Lubinsky // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 98 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineZusammenfassung: | We survey the current status of universality limits for m-point correlation functions in the bulk and at the edge for unitary ensembles, primarily when the limiting kernels are Airy, Bessel, or Sine kernels. In particular, we consider underlying measures on compact intervals, and fixed and varying exponential weights, as well as universality limits for a variety of orthogonal systems. The scope of the survey is quite narrow: we do not consider β ensembles for β≠2, nor general Hermitian matrices with independent entries, let alone more general settings. We include some open problems. |
---|