Born-Jordan and Weyl Quantizations of the 2D Anisotropic Harmonic Oscillator
We apply the Born-Jordan and Weyl quantization formulas for polynomials in canonical coordinates to the constants of motion of some examples of the superintegrable 2D anisotropic harmonic oscillator. Our aim is to study the behaviour of the algebra of the constants of motion after the different quan...
Gespeichert in:
Datum: | 2016 |
---|---|
1. Verfasser: | Rastelli, G. |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут математики НАН України
2016
|
Schriftenreihe: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/147848 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Born-Jordan and Weyl Quantizations of the 2D Anisotropic Harmonic Oscillator / G. Rastelli // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 15 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
Quantum oscillations in an anisotropic Weyl semimetal in crossed magnetic and electric fields
von: Z. Z. Alisultanov, et al.
Veröffentlicht: (2017) -
Field-Theoretic Weyl Deformation Quantization of Enlarged Poisson Algebras
von: Honegger, R., et al.
Veröffentlicht: (2008) -
Wigner Quantization of Hamiltonians Describing Harmonic Oscillators Coupled by a General Interaction Matri
von: Regniers, G., et al.
Veröffentlicht: (2009) -
Harmonic Oscillator on the SO(2,2) Hyperboloid
von: Petrosyan, D.R., et al.
Veröffentlicht: (2015) -
Analysis of Dirac and Weyl points in topological semimetals via oscillation effects
von: G. P. Mikitik, et al.
Veröffentlicht: (2021)