The Index of Dirac Operators on Incomplete Edge Spaces

We derive a formula for the index of a Dirac operator on a compact, even-dimensional incomplete edge space satisfying a ''geometric Witt condition''. We accomplish this by cutting off to a smooth manifold with boundary, applying the Atiyah-Patodi-Singer index theorem, and taking...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2016
Hauptverfasser: Albin, P., Gell-Redman, J.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2016
Schriftenreihe:Symmetry, Integrability and Geometry: Methods and Applications
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/147856
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:The Index of Dirac Operators on Incomplete Edge Spaces / P. Albin, J. Gell-Redman // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 62 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147856
record_format dspace
fulltext
spelling irk-123456789-1478562019-02-17T01:27:38Z The Index of Dirac Operators on Incomplete Edge Spaces Albin, P. Gell-Redman, J. We derive a formula for the index of a Dirac operator on a compact, even-dimensional incomplete edge space satisfying a ''geometric Witt condition''. We accomplish this by cutting off to a smooth manifold with boundary, applying the Atiyah-Patodi-Singer index theorem, and taking a limit. We deduce corollaries related to the existence of positive scalar curvature metrics on incomplete edge spaces. 2016 Article The Index of Dirac Operators on Incomplete Edge Spaces / P. Albin, J. Gell-Redman // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 62 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 58G10; 58A35; 58G05 DOI:10.3842/SIGMA.2016.089 http://dspace.nbuv.gov.ua/handle/123456789/147856 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We derive a formula for the index of a Dirac operator on a compact, even-dimensional incomplete edge space satisfying a ''geometric Witt condition''. We accomplish this by cutting off to a smooth manifold with boundary, applying the Atiyah-Patodi-Singer index theorem, and taking a limit. We deduce corollaries related to the existence of positive scalar curvature metrics on incomplete edge spaces.
format Article
author Albin, P.
Gell-Redman, J.
spellingShingle Albin, P.
Gell-Redman, J.
The Index of Dirac Operators on Incomplete Edge Spaces
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Albin, P.
Gell-Redman, J.
author_sort Albin, P.
title The Index of Dirac Operators on Incomplete Edge Spaces
title_short The Index of Dirac Operators on Incomplete Edge Spaces
title_full The Index of Dirac Operators on Incomplete Edge Spaces
title_fullStr The Index of Dirac Operators on Incomplete Edge Spaces
title_full_unstemmed The Index of Dirac Operators on Incomplete Edge Spaces
title_sort index of dirac operators on incomplete edge spaces
publisher Інститут математики НАН України
publishDate 2016
url http://dspace.nbuv.gov.ua/handle/123456789/147856
citation_txt The Index of Dirac Operators on Incomplete Edge Spaces / P. Albin, J. Gell-Redman // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 62 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT albinp theindexofdiracoperatorsonincompleteedgespaces
AT gellredmanj theindexofdiracoperatorsonincompleteedgespaces
AT albinp indexofdiracoperatorsonincompleteedgespaces
AT gellredmanj indexofdiracoperatorsonincompleteedgespaces
first_indexed 2025-07-11T02:58:29Z
last_indexed 2025-07-11T02:58:29Z
_version_ 1837317709779435520