A Riemann-Hilbert Approach for the Novikov Equation

We develop the inverse scattering transform method for the Novikov equation ut−utxx+4u²ux=3uuxuxx+u²uxxx considered on the line x∈(−∞,∞) in the case of non-zero constant background. The approach is based on the analysis of an associated Riemann-Hilbert (RH) problem, which in this case is a 3×3 matri...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автори: Boutet de Monvel, A., Shepelsky, D., Zielinski, L.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2016
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147860
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:A Riemann-Hilbert Approach for the Novikov Equation / A. Boutet de Monvel, D. Shepelsky, L. Zielinski // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 44 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147860
record_format dspace
fulltext
spelling irk-123456789-1478602019-02-17T01:23:13Z A Riemann-Hilbert Approach for the Novikov Equation Boutet de Monvel, A. Shepelsky, D. Zielinski, L. We develop the inverse scattering transform method for the Novikov equation ut−utxx+4u²ux=3uuxuxx+u²uxxx considered on the line x∈(−∞,∞) in the case of non-zero constant background. The approach is based on the analysis of an associated Riemann-Hilbert (RH) problem, which in this case is a 3×3 matrix problem. The structure of this RH problem shares many common features with the case of the Degasperis-Procesi (DP) equation having quadratic nonlinear terms (see [Boutet de Monvel A., Shepelsky D., Nonlinearity 26 (2013), 2081-2107, arXiv:1107.5995]) and thus the Novikov equation can be viewed as a ''modified DP equation'', in analogy with the relationship between the Korteweg-de Vries (KdV) equation and the modified Korteweg-de Vries (mKdV) equation. We present parametric formulas giving the solution of the Cauchy problem for the Novikov equation in terms of the solution of the RH problem and discuss the possibilities to use the developed formalism for further studying of the Novikov equation. 2016 Article A Riemann-Hilbert Approach for the Novikov Equation / A. Boutet de Monvel, D. Shepelsky, L. Zielinski // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 44 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 35Q53; 37K15; 35Q15; 35B40; 35Q51; 37K40 DOI:10.3842/SIGMA.2016.095 http://dspace.nbuv.gov.ua/handle/123456789/147860 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We develop the inverse scattering transform method for the Novikov equation ut−utxx+4u²ux=3uuxuxx+u²uxxx considered on the line x∈(−∞,∞) in the case of non-zero constant background. The approach is based on the analysis of an associated Riemann-Hilbert (RH) problem, which in this case is a 3×3 matrix problem. The structure of this RH problem shares many common features with the case of the Degasperis-Procesi (DP) equation having quadratic nonlinear terms (see [Boutet de Monvel A., Shepelsky D., Nonlinearity 26 (2013), 2081-2107, arXiv:1107.5995]) and thus the Novikov equation can be viewed as a ''modified DP equation'', in analogy with the relationship between the Korteweg-de Vries (KdV) equation and the modified Korteweg-de Vries (mKdV) equation. We present parametric formulas giving the solution of the Cauchy problem for the Novikov equation in terms of the solution of the RH problem and discuss the possibilities to use the developed formalism for further studying of the Novikov equation.
format Article
author Boutet de Monvel, A.
Shepelsky, D.
Zielinski, L.
spellingShingle Boutet de Monvel, A.
Shepelsky, D.
Zielinski, L.
A Riemann-Hilbert Approach for the Novikov Equation
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Boutet de Monvel, A.
Shepelsky, D.
Zielinski, L.
author_sort Boutet de Monvel, A.
title A Riemann-Hilbert Approach for the Novikov Equation
title_short A Riemann-Hilbert Approach for the Novikov Equation
title_full A Riemann-Hilbert Approach for the Novikov Equation
title_fullStr A Riemann-Hilbert Approach for the Novikov Equation
title_full_unstemmed A Riemann-Hilbert Approach for the Novikov Equation
title_sort riemann-hilbert approach for the novikov equation
publisher Інститут математики НАН України
publishDate 2016
url http://dspace.nbuv.gov.ua/handle/123456789/147860
citation_txt A Riemann-Hilbert Approach for the Novikov Equation / A. Boutet de Monvel, D. Shepelsky, L. Zielinski // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 44 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT boutetdemonvela ariemannhilbertapproachforthenovikovequation
AT shepelskyd ariemannhilbertapproachforthenovikovequation
AT zielinskil ariemannhilbertapproachforthenovikovequation
AT boutetdemonvela riemannhilbertapproachforthenovikovequation
AT shepelskyd riemannhilbertapproachforthenovikovequation
AT zielinskil riemannhilbertapproachforthenovikovequation
first_indexed 2025-07-11T02:58:51Z
last_indexed 2025-07-11T02:58:51Z
_version_ 1837317731860348928