Bound State Operators and Wedge-Locality in Integrable Quantum Field Theories

We consider scalar two-dimensional quantum field theories with a factorizing S-matrix which has poles in the physical strip. In our previous work, we introduced the bound state operators and constructed candidate operators for observables in wedges. Under some additional assumptions on the S-matrix,...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автор: Tanimoto, Y.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2016
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147865
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Bound State Operators and Wedge-Locality in Integrable Quantum Field Theories / Y. Tanimoto // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 35 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147865
record_format dspace
fulltext
spelling irk-123456789-1478652019-02-17T01:23:30Z Bound State Operators and Wedge-Locality in Integrable Quantum Field Theories Tanimoto, Y. We consider scalar two-dimensional quantum field theories with a factorizing S-matrix which has poles in the physical strip. In our previous work, we introduced the bound state operators and constructed candidate operators for observables in wedges. Under some additional assumptions on the S-matrix, we show that, in order to obtain their strong commutativity, it is enough to prove the essential self-adjointness of the sum of the left and right bound state operators. This essential self-adjointness is shown up to the two-particle component. 2016 Article Bound State Operators and Wedge-Locality in Integrable Quantum Field Theories / Y. Tanimoto // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 35 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 81T05; 81T40; 81U40 DOI:10.3842/SIGMA.2016.100 http://dspace.nbuv.gov.ua/handle/123456789/147865 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We consider scalar two-dimensional quantum field theories with a factorizing S-matrix which has poles in the physical strip. In our previous work, we introduced the bound state operators and constructed candidate operators for observables in wedges. Under some additional assumptions on the S-matrix, we show that, in order to obtain their strong commutativity, it is enough to prove the essential self-adjointness of the sum of the left and right bound state operators. This essential self-adjointness is shown up to the two-particle component.
format Article
author Tanimoto, Y.
spellingShingle Tanimoto, Y.
Bound State Operators and Wedge-Locality in Integrable Quantum Field Theories
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Tanimoto, Y.
author_sort Tanimoto, Y.
title Bound State Operators and Wedge-Locality in Integrable Quantum Field Theories
title_short Bound State Operators and Wedge-Locality in Integrable Quantum Field Theories
title_full Bound State Operators and Wedge-Locality in Integrable Quantum Field Theories
title_fullStr Bound State Operators and Wedge-Locality in Integrable Quantum Field Theories
title_full_unstemmed Bound State Operators and Wedge-Locality in Integrable Quantum Field Theories
title_sort bound state operators and wedge-locality in integrable quantum field theories
publisher Інститут математики НАН України
publishDate 2016
url http://dspace.nbuv.gov.ua/handle/123456789/147865
citation_txt Bound State Operators and Wedge-Locality in Integrable Quantum Field Theories / Y. Tanimoto // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 35 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT tanimotoy boundstateoperatorsandwedgelocalityinintegrablequantumfieldtheories
first_indexed 2025-07-11T02:59:27Z
last_indexed 2025-07-11T02:59:27Z
_version_ 1837317769111011328