A Probablistic Origin for a New Class of Bivariate Polynomials
We present here a probabilistic approach to the generation of new polynomials in two discrete variables. This extends our earlier work on the 'classical' orthogonal polynomials in a previously unexplored direction, resulting in the discovery of an exactly soluble eigenvalue problem corresp...
Saved in:
Date: | 2008 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2008
|
Series: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/148000 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | A Probablistic Origin for a New Class of Bivariate Polynomials / M.R. Hoare, M. Rahman // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 24 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSummary: | We present here a probabilistic approach to the generation of new polynomials in two discrete variables. This extends our earlier work on the 'classical' orthogonal polynomials in a previously unexplored direction, resulting in the discovery of an exactly soluble eigenvalue problem corresponding to a bivariate Markov chain with a transition kernel formed by a convolution of simple binomial and trinomial distributions. The solution of the relevant eigenfunction problem, giving the spectral resolution of the kernel, leads to what we believe to be a new class of orthogonal polynomials in two discrete variables. Possibilities for the extension of this approach are discussed. |
---|