The N = 1 Triplet Vertex Operator Superalgebras: Twisted Sector

We classify irreducible σ-twisted modules for the N = 1 super triplet vertex operator superalgebra SW(m) introduced recently [Adamovic D., Milas A., Comm. Math. Phys., to appear, arXiv:0712.0379]. Irreducible graded dimensions of σ-twisted modules are also determined. These results, combined with ou...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2008
Автори: Adamovic, D., Milas, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2008
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/148011
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:The N = 1 Triplet Vertex Operator Superalgebras: Twisted Sector / D. Adamovic, A. Milas // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 30 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:We classify irreducible σ-twisted modules for the N = 1 super triplet vertex operator superalgebra SW(m) introduced recently [Adamovic D., Milas A., Comm. Math. Phys., to appear, arXiv:0712.0379]. Irreducible graded dimensions of σ-twisted modules are also determined. These results, combined with our previous work in the untwisted case, show that the SL(2,Z)-closure of the space spanned by irreducible characters, irreducible supercharacters and σ-twisted irreducible characters is (9m + 3)-dimensional. We present strong evidence that this is also the (full) space of generalized characters for SW(m). We are also able to relate irreducible SW(m) characters to characters for the triplet vertex algebra W(2m + 1), studied in [Adamovic D., Milas A., Adv. Math. 217 (2008), 2664-2699, arXiv:0707.1857].