Involvement of High-Conductance Calcium-Dependent Potassium Channels in Short-Term Presynaptic Plasticity in the Rat Dentate Gyrus
We examined the involvement of high-conductance calcium-dependent potassium (BK) channels in short-term presynaptic plasticity in the rat dentate gyrus; a paired-pulse stimulation protocol was used for evaluation of this phenomenon. Paired-pulse responses were recorded from the dentate gyrus of ra...
Збережено в:
Дата: | 2013 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут фізіології ім. О.О. Богомольця НАН України
2013
|
Назва видання: | Нейрофизиология |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/148023 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Involvement of High-Conductance Calcium-Dependent Potassium Channels in Short-Term Presynaptic Plasticity in the Rat Dentate Gyrus / T. Baluchnejadmojarad, M. Roghani // Нейрофизиология. — 2013. — Т. 45, № 1. — С. 3-8. — Бібліогр.: 12 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-148023 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1480232019-02-17T01:26:00Z Involvement of High-Conductance Calcium-Dependent Potassium Channels in Short-Term Presynaptic Plasticity in the Rat Dentate Gyrus Baluchnejadmojarad, T. Roghani, M. We examined the involvement of high-conductance calcium-dependent potassium (BK) channels in short-term presynaptic plasticity in the rat dentate gyrus; a paired-pulse stimulation protocol was used for evaluation of this phenomenon. Paired-pulse responses were recorded from the dentate gyrus of rats while stimulating the medial part of the perforant path with different interpulse intervals (IPIs). Iberiotoxin (IbTX), a selective blocker of BK channels, at doses of 50 and 100 mg/kg was i.p. administered 30 min presurgery. The population spike (PS) amplitude ratio and field EPSP (fEPSP) amplitude and slope ratios were measured at IPIs 10, 20, 30, and 50 msec as indices of synaptic facilitation and/or depression. At IPIs of 10 and 20 msec, there was no significant increase in the PS amplitude ratio after IbTX. However, at longer IPIs (30 and 50 msec), there was a significant dose-dependent increase in this ratio vs the vehicle group (P < 0.05 and P < 0.01, respectively). There was a slight decrease in the fEPSP amplitude ratio at short IPIs (10, 20, and 30 msec) in rats pretreated with IbTX, while insignificant incrases in the fEPSP amplitude ratio were observed at longer IPIs (50 msec). With respect to the fEPSP slope ratio, IbTX dose-dependently and insignificantly increased it. In addition, longer IPIs did not provide significant changes in the fEPSP slope ratio. High-conductance calcium-dependent potassium channels in the rat dentate gyrus have a modulatory (inhibitory) and (apparently) regulatory role in short-term presynaptic plasticity at relatively long ISIs, and blocking of these channels leads to paired-pulse facilitation. Ми досліджували залучення викосопровідних кальційзалежних калієвих каналів (BK-каналів) у короткочасну пресинаптичну пластичність у зубчастій звивині щурів; для оцінки цього феномену застосовували протокол парної стимуляції. Відповіді у зубчастій звивині реєстрували після подразнення медіальної частини перфорантного шляху парними стимулами, що подавалися з різними міжстимульними інтервалами (МСІ). Іберіотоксин (IbTX) – селективний блокатор BK-каналів – ін’єкували внутрішньоочеревинно в дозах 50 та 100 мкг/кг за 30 хв до початку відведення. Відношення амплітуд популяційних піків (ПП), амплітуд популяційних викликаних постсинаптичних потенціалів (пВПСП) і значень швидкості наростання останніх вимірювали при МСІ, що дорівнювали 10, 20, 30 та 50 мс; ці величини розглядали як індекси синаптичного полегшення або депресії. Після введення IbTX у випадках, коли МСІ становили 10 та 20 мс, ми не спостерігали значного зростання відношення амплітуд ПП. Проте у випадках, коли використовували триваліші МСІ (30 та 50 мс), цей індекс демонстрував значне дозозалежне збільшення (порівняно з його значеннями в групі щурів, які отримували розчинник. Щодо відношення амплітуд пВПСП слід зазначити, що ми спостерігали слабке зменшення даного індексу у тварин, котрим попередньо ін’єкували IbTX, у випадках використання коротких МСІ (10, 20 та 30 мс) і незначне збільшення такого відношення при триваліших МСІ (50 мс). Що ж до швидкості наростання пВПСП, то IbTX дозозалежно та статистично невірогідно збільшував вказаний індекс. Крім того, збільшення тривалості МСІ не спричиняло значних змін швидкості наростання цих потенціалів. У межах зубчастої звивини щурів BK-канали відіграють модуляторну (гальмівну) та, безсумнівно, регуляторну роль у короткотривалій пресинаптичній пластичності при відносно тривалих МСІ; блокування даних каналів призводить до полегшення в умовах парної стимуляції. 2013 Article Involvement of High-Conductance Calcium-Dependent Potassium Channels in Short-Term Presynaptic Plasticity in the Rat Dentate Gyrus / T. Baluchnejadmojarad, M. Roghani // Нейрофизиология. — 2013. — Т. 45, № 1. — С. 3-8. — Бібліогр.: 12 назв. — англ. 0028-2561 http://dspace.nbuv.gov.ua/handle/123456789/148023 577.352.4+612.822 en Нейрофизиология Інститут фізіології ім. О.О. Богомольця НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We examined the involvement of high-conductance calcium-dependent potassium (BK) channels in short-term presynaptic plasticity in the rat dentate gyrus; a paired-pulse stimulation
protocol was used for evaluation of this phenomenon. Paired-pulse responses were recorded
from the dentate gyrus of rats while stimulating the medial part of the perforant path with
different interpulse intervals (IPIs). Iberiotoxin (IbTX), a selective blocker of BK channels,
at doses of 50 and 100 mg/kg was i.p. administered 30 min presurgery. The population spike
(PS) amplitude ratio and field EPSP (fEPSP) amplitude and slope ratios were measured at
IPIs 10, 20, 30, and 50 msec as indices of synaptic facilitation and/or depression. At IPIs of
10 and 20 msec, there was no significant increase in the PS amplitude ratio after IbTX. However, at longer IPIs (30 and 50 msec), there was a significant dose-dependent increase in this
ratio vs the vehicle group (P < 0.05 and P < 0.01, respectively). There was a slight decrease
in the fEPSP amplitude ratio at short IPIs (10, 20, and 30 msec) in rats pretreated with IbTX,
while insignificant incrases in the fEPSP amplitude ratio were observed at longer IPIs (50
msec). With respect to the fEPSP slope ratio, IbTX dose-dependently and insignificantly
increased it. In addition, longer IPIs did not provide significant changes in the fEPSP slope
ratio. High-conductance calcium-dependent potassium channels in the rat dentate gyrus have
a modulatory (inhibitory) and (apparently) regulatory role in short-term presynaptic plasticity at relatively long ISIs, and blocking of these channels leads to paired-pulse facilitation. |
format |
Article |
author |
Baluchnejadmojarad, T. Roghani, M. |
spellingShingle |
Baluchnejadmojarad, T. Roghani, M. Involvement of High-Conductance Calcium-Dependent Potassium Channels in Short-Term Presynaptic Plasticity in the Rat Dentate Gyrus Нейрофизиология |
author_facet |
Baluchnejadmojarad, T. Roghani, M. |
author_sort |
Baluchnejadmojarad, T. |
title |
Involvement of High-Conductance Calcium-Dependent Potassium Channels in Short-Term Presynaptic Plasticity in the Rat Dentate Gyrus |
title_short |
Involvement of High-Conductance Calcium-Dependent Potassium Channels in Short-Term Presynaptic Plasticity in the Rat Dentate Gyrus |
title_full |
Involvement of High-Conductance Calcium-Dependent Potassium Channels in Short-Term Presynaptic Plasticity in the Rat Dentate Gyrus |
title_fullStr |
Involvement of High-Conductance Calcium-Dependent Potassium Channels in Short-Term Presynaptic Plasticity in the Rat Dentate Gyrus |
title_full_unstemmed |
Involvement of High-Conductance Calcium-Dependent Potassium Channels in Short-Term Presynaptic Plasticity in the Rat Dentate Gyrus |
title_sort |
involvement of high-conductance calcium-dependent potassium channels in short-term presynaptic plasticity in the rat dentate gyrus |
publisher |
Інститут фізіології ім. О.О. Богомольця НАН України |
publishDate |
2013 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/148023 |
citation_txt |
Involvement of High-Conductance Calcium-Dependent Potassium Channels in Short-Term Presynaptic Plasticity in the Rat Dentate Gyrus / T. Baluchnejadmojarad, M. Roghani // Нейрофизиология. — 2013. — Т. 45, № 1. — С. 3-8. — Бібліогр.: 12 назв. — англ. |
series |
Нейрофизиология |
work_keys_str_mv |
AT baluchnejadmojaradt involvementofhighconductancecalciumdependentpotassiumchannelsinshorttermpresynapticplasticityintheratdentategyrus AT roghanim involvementofhighconductancecalciumdependentpotassiumchannelsinshorttermpresynapticplasticityintheratdentategyrus |
first_indexed |
2025-07-11T03:31:39Z |
last_indexed |
2025-07-11T03:31:39Z |
_version_ |
1837319826907856896 |
fulltext |
NEUROPHYSIOLOGY / НЕЙРОФИЗИОЛОГИЯ.—2013.—T. 45, № 1 3
UDC 577.352.4+612.822
T. BALUCHNEJADMOJARAD1 and M. ROGHANI2
INVOLVEMENT OF HIGH-CONDUCTANCE CALCIUM-DEPENDENT
POTASSIUM CHANNELS IN SHORT-TERM PRESYNAPTIC PLASTICITY
IN THE RAT DENTATE GYRUS
Received August 7, 2012.
We examined the involvement of highconductance calciumdependent potassium (BK) chan
nels in shortterm presynaptic plasticity in the rat dentate gyrus; a pairedpulse stimulation
protocol was used for evaluation of this phenomenon. Pairedpulse responses were recorded
from the dentate gyrus of rats while stimulating the medial part of the perforant path with
different interpulse intervals (IPIs). Iberiotoxin (IbTX), a selective blocker of BK channels,
at doses of 50 and 100 mg/kg was i.p. administered 30 min presurgery. The population spike
(PS) amplitude ratio and field EPSP (fEPSP) amplitude and slope ratios were measured at
IPIs 10, 20, 30, and 50 msec as indices of synaptic facilitation and/or depression. At IPIs of
10 and 20 msec, there was no significant increase in the PS amplitude ratio after IbTX. How
ever, at longer IPIs (30 and 50 msec), there was a significant dosedependent increase in this
ratio vs the vehicle group (P < 0.05 and P < 0.01, respectively). There was a slight decrease
in the fEPSP amplitude ratio at short IPIs (10, 20, and 30 msec) in rats pretreated with IbTX,
while insignificant incrases in the fEPSP amplitude ratio were observed at longer IPIs (50
msec). With respect to the fEPSP slope ratio, IbTX dosedependently and insignificantly
increased it. In addition, longer IPIs did not provide significant changes in the fEPSP slope
ratio. Highconductance calciumdependent potassium channels in the rat dentate gyrus have
a modulatory (inhibitory) and (apparently) regulatory role in shortterm presynaptic plastic
ity at relatively long ISIs, and blocking of these channels leads to pairedpulse facilitation.
Keywords: high-conductance calcium-dependent potassium channels, iberiotoxin, short-
term plasticity, paired-pulse stimulation protocol, hippocampus.
1 Department of Physiology, School of Medicine, Tehran University of
Medical Sciences, Tehran, Iran.
2 Neurophysiology Research Center, Shahed University, Tehran, Iran.
Correspondence should be addressed to T. Baluchnejadmojarad
(email: tmojarad@yahoo.com).
INTRODUCTION
Potassium channels are known as the most diverse
ion channels involved in the regulation of neuronal
excitability [1]. These channels pass outward
potassium currents, which lead to hyperpolarization of
the cell membrane and in this way attenuate the effects
of excitatory influences. Since potassium channels
reduce the neuronal excitability, they are regarded as
inhibitory [1]. Calciumactivated potassium channels
form a large family of potassium channels that are
found throughout the CNS and are activated following
elevation of the level of cytosolic calcium, largely in
response to calcium influx through voltageoperated
calcium channels open during action potentials (APs)
[2]. The involvement of these channels has been
reported in the pathogenesis of some neurological and
mental disorders [2]. One kind of these channels known
as largeconductance calcium and voltagedependent
potassium channels (also called BKCa, MaxiK, or
BK channels) is widely expressed throughout the
nervous system of vertebrates [1]. These channels
are activated in response to calcium influx during
APs and are responsible for spike repolarization and
fast afterhyperpolarization [3]. Due to this, they
can regulate the cell excitability and contribute to
AP repolarization and spiking frequency adaptation
[4]. Immunohistochemical and radioligand binding
studies have revealed the presence of BK channels
in the membranes of neuronal somata, processes, and
axon terminals in several brain structures, including
the hippocampus where they are particularly abundant
NEUROPHYSIOLOGY / НЕЙРОФИЗИОЛОГИЯ.—2013.—T. 45, № 14
T. BALUCHNEJADMOJARAD and M. ROGHANI
[2]. The hippocampus is a key structure for certain
kinds of learning and memory phenomena [5, 6].
Synaptic plasticity in the hippocampus is known to be
the neural substrate of the mnemonic processes [5, 6].
As is known, there are several forms of synaptic
plasticity, including short and longterm types. Paired
pulse stimulation is a standard technique for evaluation
of shortterm synaptic plasticity, and its effects in
the hippocampus and the mechanisms underlying
these effects have been intensely investigated, in
particular in rodents [7, 8]. Pairedpulse facilitation
(PPF) and pairedpulse depression (PPD) appear in
the dentate gyrus of rats in a manner dependent on
the stimulation site, stimulus intensity, and interpulse
intervals (IPIs) [9]. Although pairedpulse responses
in the hippocampus have been well characterized in
rodents as an index of shortterm plasticity [9], and
the role of voltagegated calcium channels have been
reported in this respect [10], there is no information on
the involvement of BK channels in modulation of this
kind of plasticity in the dentate gyrus. Therefore, our
study was designed to evaluate whether iberiotoxin
(IbTX, a highly specific inhibitor of these channels)
can modulate shortterm presynaptic plasticity in the
rat dentate gyrus following stimulation of the medial
perforant path with different IPIs.
METHODS
Thirty male Wistar rats (220250 g) were used. The
animals were housed in Plexiglas cages (34 rats in
each cage) and kept at a temperature of 22 ± 2°C
with a 12/12 light/dark cycle. Food and water were
provided ad libitum. All experimental procedures were
conducted according to the Guide for the Care and Use
of Laboratory Animals of NIH and those of the Tehran
University of Medical Sciences (Tehran, Iran).
Rats were i.p. pretreated with iberiotoxin, IbTX
(Sigma, USA, 50 or 100 µg/kg), 30 min before surgery.
Iberiotoxin was dissolved in normal saline. Then,
the animals that have received IbTX or vehicle were
prepared for electrophysiological experiments. They
were anesthetized with 1.5 g/kg of urethane (i.p.) and
fixed in a stereotaxic device. Body temperature of the
animals was maintained at 37°C using a homeothermic
blanket system. Small holes were drilled in the skull
at the positions of the stimulating and recording
electrodes. A recording electrode was positioned in
the granular cell layer of the dentate gyrus (AP = –3.8,
L = 2.5, V = 2.8 to 3.2 mm from the skull surface with
respect to the bregma) according to the coordinates
by Paxinos and Watson. A stimulating electrode was
positioned at the angular bundle of the medial perforant
path (4.24.3 mm lateral to the lambda, depth ≈
≈ 2.8 mm). The electrodes were lowered very slowly
in order to minimize tissue damage. Final positions
of the electrodes were estimated by observing evoked
responses. Correct implantation of the electrodes was
also confirmed by histological assessment. Field
potential recordings were obtained from the dentate
gyrus following stimulation of the medial perforant
path. Bipolar stimulating electrodes were made from
Tefloncoated stainless steel (AM Systems, USA) with
bare tips (diameter 0.125 mm). Stimuli were generated
using a constantcurrent isolated stimulator unit
(NPI, Germany). Glass capillary recording electrodes
(WPI Instruments, USA) had the resistance of 610
MΩ. Extracellular evoked potentials were preamplified
(using an appropriate headstage from NPI, Germany),
amplified (×1000), filtered (100 Hz to 5 kHz bandpass),
digitized at 104 sec–1, and recorded with a differential
extracellular amplifier (NPI, Germany). Data were
analyzed using customized software.
Current–Response Relationship. Single stimuli
(100800 mA, pulse width 50 msec) were applied to
the medial perforant path. Each current intensity was
tested in a randomized order at least three times with
10sec interstimulation intervals. Evoked responses
were recorded and analyzed online. The characteristic
field response in the dentate granule cells to perforant
path stimulation consisted of a positive fEPSP with a
superimposed negativegoing population spike (PS).
The fEPSP slope (25 to 75% of the initial rising phase)
and PS amplitude were measured for each response.
In this respect, the PS amplitude was measured as the
voltage difference between the peak of the first positive
wave and the peak of the first negative deflection.
Paired-Pulse Protocol. Pairs of identical stimuli
were delivered to the medial perforant path and
initiated four consecutive evoked responses to paired
pulses at 10, 20, 30, and 50mseclong interstinmulus
intervals. The stimulus intensity (typically 800 mA,
50 msec) was chosen such that the first evoked PS
was maximal. The PS amplitude ratio (second PS
amplitude/first PS amplitude qualified as pairedpulse
index, PPI) was measured at different IPIs. A negative
value indicated pairedpulse inhibition (PPD), whereas
a positive value was indicative of PPF. The same
measurement was also made for fEPSPs. In addition,
the fEPSP slope ratio (second fEPSP slope/first fEPSP
slope) was also measured.
NEUROPHYSIOLOGY / НЕЙРОФИЗИОЛОГИЯ.—2013.—T. 45, № 1 5
INVOLVEMENT OF HIGHCONDUCTANCE CALCIUMDEPENDENT POTASSIUM CHANNELS
An average value was calculated from three
successive trials with 15seclong intervals between
consequent trials. The interval at which 50% inhibition
of the second PS would occur was calculated for each
individual pairedpulse profile for determination of
any synaptic changes of neurons of the dentate gyrus
and its inhibitory internerouns and to evaluate short
term plasticity.
Statistical Analysis. All data were expressed as
means ± s.e.m. and analyzed using oneway ANOVA
and the Tukey posttest. P values less than 0.05 were
considered significant.
RESULTS
In our study, the effect of IbTX as a blocker of BK
channels on shortterm synaptic plasticity in the
hippocampal dentate gyrus was evaluated. For this
purpose, the PPI as an index of presynaptic facilitation
or inhibition was determined at different IPIs intervals
(10, 20, 30, and 50 msec). In this respect, as is shown
in Fig. 1, at IPIs of 10 and 20 msec there were some
increased in the above index for PSs (their amplitude
ratio but they did not reach the significance level).
However, at longer IPIs (30 and 50 msec), the PPI for
%
% %
%%
%
%
%
10 msec
10 msec
30 msec
20 msec
50 msec
A
A
C
B
D
B
C D
20 msec
30 msec
* ***
50 msec
Contr.
Contr. Contr.50 50100 μg/kg 100 μg/kg
Contr.50 50100 μg/kg μg/kg100
200 300
150
75
60
90
90
90
60
60
60
100
90 120
120
150
180120
150
250
100
50
30
30
30
30
100 150
200
50
25
0 0
00
50
100
50
00
0 0
F i g. 1. Effects of the blocker of BK channels
iberiotoxin at doses of 50 and 100 μg/kg (50 and
100, respectively) on the ratio of population spike
(PS) amplitudes (%) in the dentate gyrus of the
rat hippocampus at different interpulse intervals
as shown at the right (AD). *P < 0.05, **P < 0.01
vs sham (Contr.).
Р и с. 1. Впливи блокатора високопровідних
кальційзалежних калієвих каналів іберіо
токсину (50 та 100 мкг/кг) на відношення
амплітуд (%) популяційних піків у зубчастій
звивині гіпокампа щурів при різних
міжстимульних інтервалах (А–D).
F i g. 2. Effects of iberiotoxin (IbTX) at doses of
50 and 100 μg/kg on the ratio of fEPSP amplitudes
(%) in the dentate gyrus of the rat hippocampus
at different interpulse intervals as shown at the
right (AD). Other designations are the same as
in Fig. 1.
Р и с. 2. Впливи іберіотоксину (50 та 100 мкг/кг)
на відношення амплітуд (%) популяційних
ЗПСП у зубчастій звивині гіпокампа щурів при
різних міжстимульних інтервалах (А–D).
NEUROPHYSIOLOGY / НЕЙРОФИЗИОЛОГИЯ.—2013.—T. 45, № 16
T. BALUCHNEJADMOJARAD and M. ROGHANI
PSs was significantly greater after IbTX pretreatment
(P < 0.05 and P < 0.01), and the observed responses
followed a doseresponse pattern. In other words,
PPF was observed at IPIs of 30 and 50 msec in rats
pretreated with IbTX (at doses of 50 and 100 mg/kg),
as compared to the vehicle group.
In addition, as is shown in Fig. 2, the fEPSP
amplitude ratio was also calculated as another index
for presynaptic facilitation or depression. At relatively
short IPIs (10, 20, and 30 msec), slightly smaller
fEPSP amplitude ratios were found in rats pretreated
with IbTX. Thus, mild (insignificant) presynaptic
depression was observed under the action of IbTX. In
addition, at longer IPIs (50 msec), there were clearly
but insignificantly greater fEPSP amplitude ratios,
indicating slight presynaptic facilitation.
Regarding the fEPSP slope ratio (Fig. 3), IbTX pre
treatment somewhat increased it in a dosedependent
manner, but intergroup differences did not reach the
significance level. In addition, an increase in the dura in the durain the dura the durathe dura
tion of IPIs did not cause marked changes in the fEPSP
slope ratio. Some representative traces of pairedpulse
evoked responses after IbTX administration at a dose
of 100 mg/kg are demonstrated in Fig. 4.
DISCUSSION
Following IbTX, there was no significant increase
in the PS amplitude ratio at IPIs equal to 10 or 20
msec. However, at longer IPIs (30 and 50 msec), we
observed significantly greater PS amplitude ratios
vs the vehicle group, and this increase was dose
dependent. Regarding the fEPSP amplitude ratio, there
% %
%%
10 msec
30 msec
20 msec
50 msec
A
C
B
D
60
90
90
90
60
60
60
90 120
120
150
180120
30
30
30
30
0 0
00
F i g. 3. Effects of iberiotoxin (IbTX) at doses of
50 and 100 μg/kg on the fEPSP slope ratio (%)
in the dentate gyrus of the rat hippocampus at
different interpulse intervals as shown at the right
(AD). Other designations are the same as in Fig.
1.
Р и с. 3. Впливи іберіотоксину (50 та 100 мкг/кг)
на відношення швидкості наростання (%)
фокальних ЗПСП у зубчастій звивині гіпо
кампа щурів при різних міжстимульних
інтервалах (А–D).
F i g. 4. Representative traces of pairedpulse evoked responses
in the dentate gyrus of the rat hippocampus following stimulation
of the medial perforant path at different interpulse intervals after
iberiotoxin administration at a dose of 100 μg/kg.
Р и с. 4. Приклади відповідей, відведених у зубчастій
звивині гіпокампа щура при парній стимуляції (з різними
міжстимульними інтервалами) медіального перфорантного
шляху після ін’єкцій 100 мкг/кг іберіотоксину.
10
30
20
50 msec
5 mV
10 msec
Contr. Contr.50 50100 μg/kg 100 μg/kg
NEUROPHYSIOLOGY / НЕЙРОФИЗИОЛОГИЯ.—2013.—T. 45, № 1 7
INVOLVEMENT OF HIGHCONDUCTANCE CALCIUMDEPENDENT POTASSIUM CHANNELS
were slight decreases in the fEPSP amplitude ratio in
rats pretreated with IbTX at short IPIs (10, 20, and
30 msec), while at longer IPIs (50 msec), there was
an insignificant increase in this index. With respect
to the fEPSP slope ratio, IbTX dosedependently but
insignificantly increased it. In addition, increasing
durations of IPIs did not cause a significant change in
the fEPSP slope ratio.
The dentate gyrus receives its major input from the
entorhinal cortex via the socalled perforant pathway.
The respective contacts are localized primarily on
the dendrite spines of granule cells, although a small
number of perforant path fibers also form asymmet
ric synapses on the shafts of GABApositive interneu
rons [11]. It seems that IbTX inhibits BK channels on
glutamatergic terminals of this pathway at longer IPIs
and, therefore, provides augmented glutamate release
leading to shortterm facilitation. In addition, it ap
pears that GABAergic neurons have a relatively low
density of such channels and, because of this, synaptic
facilitation was observed in our study following IbTX
treatment. In support of this hypothesis and according
to the existing literature, BK channels can preferen
tially control glutamate release, whereas they appear
to exert only a minor influence over GABA release
[12]. Although the excitability of granular and pyra
midal cells in the hippocampus is believed to be regu
lated by both feedback and feedforward GABAmedi
ated mechanisms [10], our results clearly suggest that
the blockade of BK potassium channels may increase
the total calcium signal in the terminals provoking the
enhancement of glutamate release from medial perfo
rant path terminals on cells of the dentate gyrus and, to
a lesser degree, intensifying the release of GABA from
terminals of GABAergic interneurons. Thus, the net
effect would be PPF at longer IPIs, which was precise
ly observed in our study. In addition, according to pre
vious reports, PPF is prominent in synapses with a low
initial probability of transmitter release and is charac
terized by increase in the amount of a neurotransmit in the amount of a neurotransmit the amount of a neurotransmit
ter released in response to the second stimulus [10].
Since the fEPSP2/fEPSP1 amplitudes and slope ratios
did not significantly change in IbTXpretreated rats, it
is possible that projections of inhibitory interneurons
terminate on the somata of cells of the dentate gyrus
and, therefore, determine the input/output of the target
cells. To conclude, our study showed that BK channels
in the rat dentate gyrus have a modulatory (inhibitory)
and an apparently regulatory role in shortterm pre
synaptic plasticity at relatively long interstimulus in
tervals, and their blockade leads to PPF.
Acknowledgments. This research was funded and
supported by the TUMS grant No. 851 (Tehran University of
Medical Sciences).
T. Балухнеджадмоджарад1, М. Рогані2
ЗАЛУЧЕННЯ ВИСОКОПРОВІДНИХ
КАЛЬЦІЙЗАЛЕЖНИХ КАЛІЄВИХ КАНАЛІВ У
КОРОТКОЧАСНУ ПРЕСИНАПТИЧНУ ПЛАСТИЧНІСТЬ
У ЗУБЧАСТІЙ ЗВИВИНІ ЩУРА
1 Медичний факультет Тегеранського університета медич
них наук (Іран).
2 Нейрофізіологічний дослідницький центр, Університет
Шахед, Тегеран (Іран).
Р е з ю м е
Ми досліджували залучення викосопровідних кальційза
лежних калієвих каналів (BKканалів) у короткочасну пре
синаптичну пластичність у зубчастій звивині щурів; для
оцінки цього феномену застосовували протокол парної сти
муляції. Відповіді у зубчастій звивині реєстрували після
подразнення медіальної частини перфорантного шляху пар
ними стимулами, що подавалися з різними міжстимульни
ми інтервалами (МСІ). Іберіотоксин (IbTX) – селективний
блокатор BKканалів – ін’єкували внутрішньоочеревинно
в дозах 50 та 100 мкг/кг за 30 хв до початку відведення.
Відношення амплітуд популяційних піків (ПП), амплітуд
популяційних викликаних постсинаптичних потенціалів
(пВПСП) і значень швидкості наростання останніх вимірю
вали при МСІ, що дорівнювали 10, 20, 30 та 50 мс; ці вели
чини розглядали як індекси синаптичного полегшення або
депресії. Після введення IbTX у випадках, коли МСІ ста
новили 10 та 20 мс, ми не спостерігали значного зростання
відношення амплітуд ПП. Проте у випадках, коли викорис
товували триваліші МСІ (30 та 50 мс), цей індекс демон
стрував значне дозозалежне збільшення (порівняно з його
значеннями в групі щурів, які отримували розчинник. Щодо
відношення амплітуд пВПСП слід зазначити, що ми спосте
рігали слабке зменшення даного індексу у тварин, котрим
попередньо ін’єкували IbTX, у випадках використання ко
ротких МСІ (10, 20 та 30 мс) і незначне збільшення такого
відношення при триваліших МСІ (50 мс). Що ж до швид
кості наростання пВПСП, то IbTX дозозалежно та статис
тично невірогідно збільшував вказаний індекс. Крім того,
збільшення тривалості МСІ не спричиняло значних змін
швидкості наростання цих потенціалів. У межах зубчастої
звивини щурів BKканали відіграють модуляторну (галь
мівну) та, безсумнівно, регуляторну роль у короткотривалій
пресинаптичній пластичності при відносно тривалих МСІ;
блокування даних каналів призводить до полегшення в умо
вах парної стимуляції.
NEUROPHYSIOLOGY / НЕЙРОФИЗИОЛОГИЯ.—2013.—T. 45, № 18
T. BALUCHNEJADMOJARAD and M. ROGHANI
REFERENCES
1. B. Hille, Ion Channels of Excitable Membranes, Sinauer
Associates, Inc., Sunderland, Mass. (2001).
2. S. G. Wanner, R. O. Koch, A. Koschak, et al., “High
conductance calciumactivated potassium channels in rat
brain: pharmacology, distribution, and subunit composition,”
Biochemistry, 38, No. 17, 53925400 (1999).
3. M. D. Womack, C. Hoang, and K. Khodakhah, “Large
conductance calciumactivated potassium channels affect both
spontaneous firing and intracellular calcium concentration in
cerebellar Purkinje neurons,” Neuroscience, 162, No. 4, 989
1000 (2009).
4. N. Gu, K. Vervaeke, and J. F. Storm, “BK potassium chan
nels facilitate highfrequency firing and cause early spike fre
quency adaptation in rat CA1 hippocampal pyramidal cells,” J.
Physiol., 580, Part 3, 859882 (2007).
5. H. Eichenbaum, “Hippocampus: cognitive processes and
neural representations that underlie declarative memory,”
Neuron, 44, No. 1, 109120 (2004).
6. T. V. Bliss and G. L. Collingridge, “A synaptic model of
memory: longterm potentiation in the hippocampus,” Nature,
361, No. 6407, 3139 (1993).
7. R. S. Zucker and W. G. Regehr, “Shortterm synaptic
plasticity,” Annu. Rev. Physiol., 64, 355405 (2002).
8. R. Tamura, H. Nishida, S. Eifuku, et al., “ Shortterm synaptic
plasticity in the dentate gyrus of monkeys,” PLoS One, 6,
No. 5, e20006 (2011).
9. J. D. Bronzino, J. H. Blaise, and P. J. Morgane, “The paired
pulse index: a measure of hippocampal dentate granule cell
modulation,” Ann. Biomed. Eng., 25, No. 5, 870873 (1997).
10. R. Lashgari, F. Motamedi, S. M. Noorbakhsh, et al., “Assessing
the longterm role of Ltype voltage dependent calcium
channel blocker verapamil on shortterm presynaptic plasticity
at dentate gyrus of hippocampus,” Neurosci. Lett., 415, No. 2,
174178 (2007).
11. D. G. Amaral, H. E. Scharfman, and P. Lavenex, “The dentate
gyrus: fundamental neuroanatomical organization (dentate
gyrus for dummies),” Prog. Brain Res., 163, 322 (2007).
12. M. Martire, V. Barrese, M. D’Amico, et al., “Presynaptic
BK channels selectively control glutamate versus GABA
release from cortical and hippocampal nerve terminals,” J.
Neurochem., 115, No. 2, 411422 (2010).
|