Hypercapnic Chemosensitivity in Patients with Heart Failure: Relation to Shifts in Type-1 Insulin-Like Growth Factor and Sex Hormone-Binding Globulin Levels
In patients suffering from heart failure (HF), autonomic imbalance develops even at early stages along with derangements of cardiopulmonary reflex control and abnormalities in metabolism of several hormones. In 34 men with stable systolic HF, we investigated hypercapnic chemosensitivity (HCS, lit...
Gespeichert in:
Datum: | 2013 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут фізіології ім. О.О. Богомольця НАН України
2013
|
Schriftenreihe: | Нейрофизиология |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/148070 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Hypercapnic Chemosensitivity in Patients with Heart Failure: Relation to Shifts in Type-1 Insulin-Like Growth Factor and Sex Hormone-Binding Globulin Levels / J. Maj, A. Rydlewska, B. Ponikowska, W. Banasiak, P. Ponikowski, E.A. Jankowska // Нейрофизиология. — 2013. — Т. 45, № 2. — С. 149-155. — Бібліогр.: 33 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-148070 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1480702019-02-17T01:25:58Z Hypercapnic Chemosensitivity in Patients with Heart Failure: Relation to Shifts in Type-1 Insulin-Like Growth Factor and Sex Hormone-Binding Globulin Levels Maj, J. Rydlewska, A. Ponikowska, B. Banasiak, W. Ponikowski, P. Jankowska, E.A. In patients suffering from heart failure (HF), autonomic imbalance develops even at early stages along with derangements of cardiopulmonary reflex control and abnormalities in metabolism of several hormones. In 34 men with stable systolic HF, we investigated hypercapnic chemosensitivity (HCS, liter/min·mm Hg) measured using the rebreathing method and defined as the slope of the regression line relating minute ventilation (VE, liter/min) to endtidal carbon dioxide concentration (PETCO₂ , mm Hg). Serum levels of testosterone, dehydroepiandrosterone sulfate, type1 insulinlike growth factor (IGF1), sex hormonebinding globulin (SHBG), estradiol, and cortisol were measured using immunoassays. We found that there were no associations between HCS and clinical variables, applied therapy, and comorbidities (all P > 0.2). Augmented HCS was accompanied by increased serum SHBG (when expressed in nM, r = 0.43, P < 0.05; when expressed as percentage of the agematched reference values, r = 0.62, P < 0.001) and the reduced serum IGF1 (when expressed in ng/ml and as percentage of the abovementioned values, r = –0.49, P < 0.05, and r = = –0.47, P = 0.007, respectively). The HCS was not related to serum levels of all the remaining analyzed hormones (all P > 0.2). Thus, it may be suggested that the hormone stimuli can noticeably modify the reflex mechanisms in cardiorespiratory control in the clinical setting of cardiovascular pathology. У пацієнтів із серцевою недостатністю (СН) навіть на ранніх стадіях захворювання розвивається автономний дисбаланс паралельно з розладами контролю серцевосудинної системи та відхиленнями метаболізму деяких гормонів від норми. Ми досліджували хемочутливість до гіперкапнії (HCS) у 34 чоловіків із СН, використовуючи метод зворотного дихання. Така чутливість визначалась як нахил лінії регресії при співставленні хвилинного об’єму вентиляції (л/хв) та кінцевої концентрації двооксиду вуглецю (мм рт. ст.). Рівні тестостерону, дигідроепіандростерону сульфату, інсулінподібного фактора росту типу 1 (IGF1), глобуліну, що зв’язує статеві гормони (SHBG), естрадіолу та кортизолу визначали в сироватці крові, використовуючи імунологічні методики. Як виявилося, зв’язки між рівнем HCS, з одного боку, та клінічними показниками, застосованою терапією та супутніми захворюваннями – з другого, були відсутніми (в усіх випадках P > 0.2). Підвищена HCS супроводжувалася підвищеними рівнями SHBG (для концентрацій у наномолях на 1 л r = 0.43, P < 0.05, а для нормованих значень, наведених щодо певної вікової групи, r = 0.62, P < 0.001) та низькими рівнями IGF1 (для концентрацій у нанограмах на 1 мл та для наведених нормованих значень r = –0.49, P < 0.05 та r = –0.47, P = 0.007 відповідно). Значення HCS не виявляли будьяких зв’язків з рівнями всіх досліджених гормонів у сироватці. Це дозволяє думати, що гормональні стимули можуть помітно модифікувати рефлекторні механізми контролю серцевосудинної системи у клінічних випадках її патологій. 2013 Article Hypercapnic Chemosensitivity in Patients with Heart Failure: Relation to Shifts in Type-1 Insulin-Like Growth Factor and Sex Hormone-Binding Globulin Levels / J. Maj, A. Rydlewska, B. Ponikowska, W. Banasiak, P. Ponikowski, E.A. Jankowska // Нейрофизиология. — 2013. — Т. 45, № 2. — С. 149-155. — Бібліогр.: 33 назв. — англ. 0028-2561 http://dspace.nbuv.gov.ua/handle/123456789/148070 616.12+577.175.8 en Нейрофизиология Інститут фізіології ім. О.О. Богомольця НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
In patients suffering from heart failure (HF), autonomic imbalance develops even at early
stages along with derangements of cardiopulmonary reflex control and abnormalities
in metabolism of several hormones. In 34 men with stable systolic HF, we investigated
hypercapnic chemosensitivity (HCS, liter/min·mm Hg) measured using the rebreathing method
and defined as the slope of the regression line relating minute ventilation (VE, liter/min)
to endtidal carbon dioxide concentration (PETCO₂
, mm Hg). Serum levels of testosterone,
dehydroepiandrosterone sulfate, type1 insulinlike growth factor (IGF1), sex hormonebinding globulin (SHBG), estradiol, and cortisol were measured using immunoassays. We
found that there were no associations between HCS and clinical variables, applied therapy,
and comorbidities (all P > 0.2). Augmented HCS was accompanied by increased serum
SHBG (when expressed in nM, r = 0.43, P < 0.05; when expressed as percentage of the agematched reference values, r = 0.62, P < 0.001) and the reduced serum IGF1 (when expressed
in ng/ml and as percentage of the abovementioned values, r = –0.49, P < 0.05, and r =
= –0.47, P = 0.007, respectively). The HCS was not related to serum levels of all the remaining
analyzed hormones (all P > 0.2). Thus, it may be suggested that the hormone stimuli can
noticeably modify the reflex mechanisms in cardiorespiratory control in the clinical setting
of cardiovascular pathology. |
format |
Article |
author |
Maj, J. Rydlewska, A. Ponikowska, B. Banasiak, W. Ponikowski, P. Jankowska, E.A. |
spellingShingle |
Maj, J. Rydlewska, A. Ponikowska, B. Banasiak, W. Ponikowski, P. Jankowska, E.A. Hypercapnic Chemosensitivity in Patients with Heart Failure: Relation to Shifts in Type-1 Insulin-Like Growth Factor and Sex Hormone-Binding Globulin Levels Нейрофизиология |
author_facet |
Maj, J. Rydlewska, A. Ponikowska, B. Banasiak, W. Ponikowski, P. Jankowska, E.A. |
author_sort |
Maj, J. |
title |
Hypercapnic Chemosensitivity in Patients with Heart Failure: Relation to Shifts in Type-1 Insulin-Like Growth Factor and Sex Hormone-Binding Globulin Levels |
title_short |
Hypercapnic Chemosensitivity in Patients with Heart Failure: Relation to Shifts in Type-1 Insulin-Like Growth Factor and Sex Hormone-Binding Globulin Levels |
title_full |
Hypercapnic Chemosensitivity in Patients with Heart Failure: Relation to Shifts in Type-1 Insulin-Like Growth Factor and Sex Hormone-Binding Globulin Levels |
title_fullStr |
Hypercapnic Chemosensitivity in Patients with Heart Failure: Relation to Shifts in Type-1 Insulin-Like Growth Factor and Sex Hormone-Binding Globulin Levels |
title_full_unstemmed |
Hypercapnic Chemosensitivity in Patients with Heart Failure: Relation to Shifts in Type-1 Insulin-Like Growth Factor and Sex Hormone-Binding Globulin Levels |
title_sort |
hypercapnic chemosensitivity in patients with heart failure: relation to shifts in type-1 insulin-like growth factor and sex hormone-binding globulin levels |
publisher |
Інститут фізіології ім. О.О. Богомольця НАН України |
publishDate |
2013 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/148070 |
citation_txt |
Hypercapnic Chemosensitivity in Patients with Heart Failure: Relation to Shifts in Type-1 Insulin-Like Growth Factor and Sex Hormone-Binding Globulin Levels / J. Maj, A. Rydlewska, B. Ponikowska, W. Banasiak, P. Ponikowski, E.A. Jankowska // Нейрофизиология. — 2013. — Т. 45, № 2. — С. 149-155. — Бібліогр.: 33 назв. — англ. |
series |
Нейрофизиология |
work_keys_str_mv |
AT majj hypercapnicchemosensitivityinpatientswithheartfailurerelationtoshiftsintype1insulinlikegrowthfactorandsexhormonebindingglobulinlevels AT rydlewskaa hypercapnicchemosensitivityinpatientswithheartfailurerelationtoshiftsintype1insulinlikegrowthfactorandsexhormonebindingglobulinlevels AT ponikowskab hypercapnicchemosensitivityinpatientswithheartfailurerelationtoshiftsintype1insulinlikegrowthfactorandsexhormonebindingglobulinlevels AT banasiakw hypercapnicchemosensitivityinpatientswithheartfailurerelationtoshiftsintype1insulinlikegrowthfactorandsexhormonebindingglobulinlevels AT ponikowskip hypercapnicchemosensitivityinpatientswithheartfailurerelationtoshiftsintype1insulinlikegrowthfactorandsexhormonebindingglobulinlevels AT jankowskaea hypercapnicchemosensitivityinpatientswithheartfailurerelationtoshiftsintype1insulinlikegrowthfactorandsexhormonebindingglobulinlevels |
first_indexed |
2025-07-11T03:48:38Z |
last_indexed |
2025-07-11T03:48:38Z |
_version_ |
1837320867843932160 |
fulltext |
NEUROPHYSIOLOGY / НЕЙРОФИЗИОЛОГИЯ.—2013.—T. 45, № 2 149
UDC 616.12+577.175.8
J. MAJ1, A. RYDLEWSKA1,2, B. PONIKOWSKA3, W. BANASIAK1,
P. PONIKOWSKI1,2, and E. A. JANKOWSKA1,2
HYPERCAPNIC CHEMOSENSITIVITY IN PATIENTS WITH HEART FAILURE:
RELATION TO SHIFTS IN TYPE-1 INSULIN-LIKE GROWTH FACTOR AND SEX
HORMONE-BINDING GLOBULIN LEVELS
Received October 15, 2012.
In patients suffering from heart failure (HF), autonomic imbalance develops even at early
stages along with derangements of cardiopulmonary reflex control and abnormalities
in metabolism of several hormones. In 34 men with stable systolic HF, we investigated
hypercapnic chemosensitivity (HCS, liter/min·mm Hg) measured using the rebreathing method
and defined as the slope of the regression line relating minute ventilation (VE, liter/min)
to endtidal carbon dioxide concentration (PETCO2, mm Hg). Serum levels of testosterone,
dehydroepiandrosterone sulfate, type1 insulinlike growth factor (IGF1), sex hormone
binding globulin (SHBG), estradiol, and cortisol were measured using immunoassays. We
found that there were no associations between HCS and clinical variables, applied therapy,
and comorbidities (all P > 0.2). Augmented HCS was accompanied by increased serum
SHBG (when expressed in nM, r = 0.43, P < 0.05; when expressed as percentage of the age
matched reference values, r = 0.62, P < 0.001) and the reduced serum IGF1 (when expressed
in ng/ml and as percentage of the abovementioned values, r = –0.49, P < 0.05, and r =
= –0.47, P = 0.007, respectively). The HCS was not related to serum levels of all the remaining
analyzed hormones (all P > 0.2). Thus, it may be suggested that the hormone stimuli can
noticeably modify the reflex mechanisms in cardiorespiratory control in the clinical setting
of cardiovascular pathology.
Keywords: hypercapnic chemosensitivity, IGF-1, SHBG, heart failure.
1 Center for Heart Diseases, Military Hospital, Wroclaw, Poland.
2 Laboratory for Applied Research on Cardiovascular System, Faculty of
Health Sciences, Wroclaw Medical University, Wroclaw, Poland.
3 Department of Physiology, Faculty of Health Sciences, Wroclaw Medical
University, Wroclaw, Poland.
Correspondence should be addressed to E. A. Jankowska
(email: ewa.jankowska@am.wroc.pl).
INTRODUCTION
The complex pathophysiology of systolic heart
failure (HF) involves, in addition to hemodynamic
abnormalities, the dysfunction of most body organs,
including the autonomic nervous and endocrine systems
[1, 2]. Augmented hypercapnic chemosensitivity (HCS)
reflects considerably deranged cardiopulmonary reflex
control [3, 4] manifested, in particular, in patients with
HF [2, 5, 6]. This phenomenon is linked to exercise
intolerance and poor outcome and mostly occurs at
early stages of HF [2, 5, 7].
Men with systolic HF are characterized by
derangements within the functioning of several
endocrine glands [8] and demonstrate deficiencies in,
e.g., circulating testosterone, dehydroepiandrosterone
sulfate (DHEAS), and insulinlike growth factor type 1
(IGF1), which, independently of each other and of
other clinical prognosticators, unfavorably affect the
longterm prognosis [9]. A reduced level of serum
testosterone is related to a diminished lean tissue
mass [10], severe depressive symptoms [11], exercise
intolerance [12, 13], and anemia [14]. Moreover, IGF1
deficiency in this group of patients is associated with
further reduction in both exercise capacity [12] and
hemoglobin level [14], whereas DHEAS deficiency
is linked with augmented depressive symptoms [15].
We have also demonstrated that both low and high
circulating estradiol (E2) levels are related to increased
mortality in men with systolic HF, which may suggest
that some optimum E2 levels are advantageous for
these patients [16].
The autonomic nervous and endocrine systems are
tightly linked to each other due to the anatomical
contiguity of the hypothalamic–hypophyseal–
NEUROPHYSIOLOGY / НЕЙРОФИЗИОЛОГИЯ.—2013.—T. 45, № 2150
J. MAJ, A. RYDLEWSKA, B. PONIKOWSKA
endocrine gland axis and CNS structures [17].
Sympathetic and parasympathetic neurons within
both central and peripheral nervous systems are
characterized by the presence of receptors specific
for androgens, estrogens, mineralocorticoids, and
glucocorticoids [17, 18]. On the other hand, both
gonads and adrenal glands are innervated by autonomic
nerve fibers [19].
Hence, taking into consideration these close
interplays between the hormonal and autonomic
nervous mechanisms [17, 20] and experimental
evidence that, e.g., estrogens modulate the central
autonomic balance [21], we hypothesized that there
would be associations between the hormone status
(assessed based on circulating levels of certain
hormones) and central HCS (reflecting the efficiency
of reflex control of respiration). This hypothesis was
tested on the patients with systolic HF at the early
stage of heart disease.
METHODS
Examined Group. The recruitment phase of the
study was conducted in the Center for Heart Diseases,
Military Hospital (Wroclaw, Poland) among patients
with systolic HF attending the outpatient HF clinic.
The criteria for study inclusion were: (i) age
between 18 and 75 years, (ii) male gender, (iii) a
documented history of HF for more than 6 months
preceding the study, (iv) HF symptoms corresponding
to the functional class (New York Heart Association,
NYHA) III, (v) clinical stability (i.e., unchanged
severity of the signs and symptoms of HF along
with unchanged medications) for minimum 3 months
preceding the study, and (vi) left ventricular ejection
fraction (LVEF) ≤45%.
The exclusion criteria were as follows: (i) acute
coronary syndrome and/or coronary revascularization
within 3 months preceding the study, (ii) unplanned
hospitalization due to HF deterioration or any other
cardiovascular reason within 3 months preceding the
study, (iii) atrial fibrillation, a pacemaker rhythm,
and/or frequent ectopics, and (iv) any hormonal
dysfunction and/or hormonal therapy (either in the
time of the study or in the past).
The study protocol was approved by the local Ethics
Committees, and all subjects gave written informed
consent. The study was conducted in accordance with
the Helsinki Declaration.
Study Protocol. In all patients, venous blood
samples were taken in the morning after a supine rest
of at least 15 min. After centrifugation, the serum was
collected and frozen at –70°C until further analyzed.
The serum levels of total testosterone (TT, ng/ml),
DHEAS (ng/ml), E2 (pg/ml), sex hormonebinding
globulin (SHBG, nM), and cortisol (nM) were
assessed using electrochemiluminescence techniques
(Elecsys 2010, Roche Diagnostics, Germany). The
serum IGF1 level (ng/ml) was assessed using an
immunochemiluminescence technique (Immulite
2000/2500, Diagnostic Products, USA).
The inter and intraassay variability coefficients
for TT, DHEAS, E2, SHBG, cortisol, and IGF1 were
taken as 3 and 4%, 2 and 4%, 5 and 4%, 2 and 4%, 1
and 2%, and 3 and 6%, respectively.
The deficiencies of TT, DHEAS, and IGF1 were
defined prospectively as a serum hormone level less
than or equal to the 10th percentile calculated for the
equivalent age categories in the cohort of healthy men,
as previously described [9]. Serum TT, DHEAS, and
IGF1 were referred to values assessed among the
population of healthy men living in Wroclaw, Poland
[9]. Medians of the analyzed serum hormone levels in
the age groups 51 to 60, 61 to 70, and older than 71
years were as follows: TT, 4.20, 3.90, and 4.40 ng/ml,
DHEAS, 1648, 989, and 936 ng/ml, and IGF1, 290.1,
268.5, and 229.0 ng/ml [9].
According to DeGroot and Jameson [22], the E2
excess in men with systolic HF was defined as serum
E2 ≥ 50 pg/ml, and the E2 deficiency as serum E2 ≤
≤ 10 pg/ml. The following cutoff values of serum
SHBG and cortisol were considered as excess of these
hormones: ≥50 and ≥700 nM, respectively [22].
The level of plasma Nterminal proBtype
natriuretic peptide (NTproBNP, pg/ml) was measured
using an electrochemiluminescence technique
(Elecsys 1010/2010, Roche Diagnostics, Germany).
The renal function was assessed based on the estimated
glomerular filtration rate (GFR; ml/min×1.73 m2)
[22]. Serum highsensitive Creactive protein (hsCRP,
mg/liter) was assessed using immunonephelometry
(Dade Behring, Marburg, Germany) [22].
HCS Assessment. The HCS assessments (allowing
us to estimate the peculiarities of respiration control)
were carried out between 9 and 12 a.m. in an air
conditioned room. All subjects were asked to avoid
strenuous physical activity for 24 h before each test
and to avoid smoking, eating, or consuming caffeine
for 3 h prior to the study. The tests were preceded by
30 min of resting in a quiet environment.
The HCS was assessed with a rebreathing method
NEUROPHYSIOLOGY / НЕЙРОФИЗИОЛОГИЯ.—2013.—T. 45, № 2 151
HYPERCAPNIC CHEMOSENSITIVITY IN PATIENTS WITH HEART FAILURE
[23, 24] using a 5liter bag containing almost 100%
oxygen initially and room air in the remaining volume.
During the entire test, minute ventilation (VE; liter/min)
and endtidal carbon dioxide concentration (PETCO2,
mm Hg) were measured breath by breath using the gas
exchange system (BREEZE EX, Cardiorespiratory
Diagnostic Software 19911996, Medical Graphics,
USA). Subjects were wearing a nose clip. The test was
divided into three parts: (i) resting recording (3 min),
(ii) rebreathing within a closed circuit (using a 5liter
bag), and (iii) recovery (3 min). During both resting
and recovery stages, subjects were breathing with
room air. At the beginning of the second stage, subjects
were switched unnoticeably to breathing within a
closed circuit. During the rebreathing stage, subjects
were exhaling CO2 to a 5liter bag, which resulted
in a steady increase in the CO2 concentration within
this bag, and, subsequently, in inhaling a gas mixture
with a continuously increasing CO2 concentration
in peripheral blood. As a consequence, hypercapnia
developed in the subjects, which in turn induced
hyperventilation in a reflex manner. This stage was
stopped when a subject became either breathless (and
informed the staff by tagging at a table), or PETCO2
exceeded 70 mm Hg. The HCS was defined as the
slope of the regression graph relating VE to PETCO2
concentration measured during the rebreathing stage
of the test (expressed in liter/min·mm Hg) [23, 24].
Statistical Analyses. Normally distributed
continuous variables were presented as means ± s.d.
The intergroup differences were tested using the
Student’s ttest. Variables with a skewed distribution
were expressed as medians with lower and upper
quartiles and were logtransformed, which enabled
normalization of these distributions. Categorical
variables were expressed as numbers with percentages.
Intergroup differences were tested using the c2 test.
Relationships between continuous variables were
calculated using the Pearson’s correlation coefficient
for variables with a normal distribution or the
Spearman’s rank correlation coefficient for variables
with a skewed distribution.
In intergroup comparisons, values of P < 0.05 were
considered significant.
RESULTS
Baseline clinical and laboratory parameters are
shown in Table 1. Mean values of the serum levels
of analyzed hormones along with the prevalence of
Table 1. Baseline Clinical and Laboratory Characteristics of
Examined Patients with Mild Systolic Heart Failure (HF)
Т а б л и ц я 1. Вихідні клінічні та лабораторні
характеристики досліджених пацієнтів з помірною
систолічною серцевою недостатністю
Conditions for examination of
patients with mild systolic HF Variables
Inclusion criteria
Age 61 ± 10 years
BMI 28.6 ± 4.0 kg/m2
NYHA class I/II 21/79%
Etiology (CAD) 65%
Hypertension (yes) 62%
DM (yes) 24%
LVEF 31 ± 7%
LVEDD 66 ± 8 mm
Hemoglobin 14.4 ± 0.9 g/dl
hsCRP 1.23 (0.98 – 2.27) mg/liter
GFR 82.0 ± 13.6 ml/min·1.73 m2
Na 141 ± 3 mEq/liter
NTproBNP 655 (263 – 942) pg/ml
Treatment
ACE inhibitor and/or ARB 89%
βBlocker 100%
Aldosterone antagonist 12%
Loop diuretic 47%
Thiazide diuretic 35%
Digoxin 24%
Statin 88%
Acetylsalicylic acid 82%
Footnotes. Data are presented as means ± s.d., medians with lower
and upper quartiles, or percentage where appropriate. BMI, body
mass index; NYHA, New York Heart Association; CAD, coronary
artery disease; DM, diabetes mellitus; LVEF, left ventricular ejection
fraction; LVEDD, left ventricular enddiastolic diameter; hsCRP,
highsensitivity Creactive protein; GFR, glomerular filtration rate;
NTproBNP, plasma Nterminal proBtype natriuretic peptide;
ACE, angiotensin converting enzyme; and ARB, angiotensin
receptor blocker.
hormonal abnormalities in men with mild systolic HF
are shown in Table 2.
The mean value of HCS in examined men with mild
systolic HF was 0.68 (0.430.95) liter/min·mm Hg,
and was higher than the reference values assessed in
our laboratory (P < 0.01).
There were no associations between HCS and
clinical variables (including the plasma NTproBNP
level), applied therapy, and comorbidities (in all
cases, P > 0.2).
The augmented HCS was accompanied by an
increased serum SHBG level, when expressed both in
nM (r = 0.43, P < 0.05, Fig. 2) and when normalized
NEUROPHYSIOLOGY / НЕЙРОФИЗИОЛОГИЯ.—2013.—T. 45, № 2152
J. MAJ, A. RYDLEWSKA, B. PONIKOWSKA
Table 2. Serum Hormone Levels and Frequency of Cases of Hormone Deficiency or Excess in Examined Patients with Mild Systolic
Heart Failure (HF)
Т а б л и ц я 2. Рівні гормонів у сироватці крові та частота випадків дефіциту або надлишку гормонів у досліджених
пацієнтів з помірною систолічною серцевою недостатністю
Analyzed hormones
Patients with mild systolic HP (n = 34)
mean values of the serum
hormone levels hormone deficiency (%) hormone excess (%)
TT 5.00 (4.30 – 5.80) ng/ml 9 –
DHEAS 558 (96 – 1214) pg/ml 47 –
IGF1 114.5 (103.0 – 141.0) ng/ml 91 –
SHBG 46.3 (38.5 – 57.3) nM – 38
E2 29.4 (25.1 – 31.8) pg/ml 0 0
Cortisol 613 (517 – 718) nM – 30
Footnotes. Data are presented as medians with lower and upper quartiles or percentages where appropriate. TT, total testosterone; DHEAS,
dehydroepiandrosterone sulfate; IGF1, type1 insulinlike growth factor; SHBG, sex hormone binding globulin, and E2, estradiol.
F i g. 1. Relationship between the serum level
of insulinlike growth factor type 1 (abscissa,
ng/ml) and hypercapnic chemosensitivity (ordinate,
liter/min·mm Hg) in patients with mild systolic
heart failure.
Р и с. 1. Взаємовідношення рівнів інсуліноподіб-
ного фактора росту типу 1 у сироватці крові (вісь
абсцис, нг/мл) та хемочутливості до гіперкапнії
(вісь ординат, л/хв·мм рт. ст.) у пацієнтів з помір-
ною систолічною серцевою недостатністю.
1.0
liter/min · mm Hg
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
40
r = –0.49
P < 0.05
60 80 100 120 140 160 180 200 220 240 ng/ml
with respect to the age-matched reference values
(r = 0.62, P < 0.001), and the reduced serum IGF1
level, also when expressed in both ng/ml (r = –0.49,
P < 0.05, Fig. 1) and as percentage of agematched
reference values (r = –0.47, P = 0.007).
The HCS was not related to serum levels of all the
remaining analyzed hormones (in all cases, P > 0.2).
DISCUSSION
In our study, we have demonstrated that men with mild
systolic HF treated according to current guidelines
manifest noticeably augmented central hypercapnic
chemoreceptor sensitivity. Our observation confirms
that reflex mechanisms controlling the functioning
of the cardiopulmonary system are deranged at early
stages of the heart disease, and therapies counteracting
the overactivated renin-angiotensin-aldosterone and
adrenergic systems do not bring these mechanisms to
normalization [2]. It should be emphasized that we have
not found any associations of the chemosensitivity
with any clinical and laboratory parameters, applied
treatment, and comorbidities in men with mild
systolic HF. In particular, at the early stage of heart
disease, augmented hypercapnic chemoreceptor
sensitivity reflects neither the HF severity, the
magnitude of inflammation (expressed using serum
hsCRP), the neurohormonal activation (measured
using plasma NTproBNP), and the presence of major
comorbidities, such as anemia, renal dysfunction, and
diabetes mellitus.
There is evidence that androgens are responsible for
increased ventilatory force in men [25]. Also, in an
experimental rodent model of cerebral ischemia, the E2
deficiency was found to be linked with the autonomic
imbalance, which can be at least partly restored
NEUROPHYSIOLOGY / НЕЙРОФИЗИОЛОГИЯ.—2013.—T. 45, № 2 153
HYPERCAPNIC CHEMOSENSITIVITY IN PATIENTS WITH HEART FAILURE
during E2 supplementation [21]. However, although
anticipated [25], we did not find relations between
hypercapnic chemoreceptor sensitivity and circulating
levels of neither TT nor E2. In this context, it is very
intriguing that we have found the other relationships,
i.e., between augmented HCS and low IGF1 together
with high SHBG levels in men with systolic HF.
Although anticipated, we did not record any relations
between the chemosensitivity and cortisol level in
examined patients.
Although it is not commonly acknowledged, IGF1
is an important modulator of the functions of the
autonomic nervous system [26, 27]. Cachectic patients
with HF, on the one hand, develop abnormal functioning
of the growth hormoneIGF1 axis [28], and, on the
other hand, demonstrate a severe autonomic imbalance
and overactivation of central chemoreceptors [28].
Moreover, we showed earlier that men with systolic
HF along with IGF1 deficiency develop exercise
hyperpnea [12]. Therefore, the relationship between
an overactivated chemoreflex and reduced circulating
IGF1 levels reported here might at least partly explain
the previously observed phenomena.
It should be taken into account that SHBG not only
is an agent responsible for the transport of steroid
hormones in the circulation but also is considered a
separate hormone that, through its interaction with
specific receptors, can modify the metabolism of
target cells, including the autonomic structures within
the CNS [29]. Patients with HF demonstrate increased
serum levels of SHBG accompanied by high plasma
NTproBNP, low LVEF, and low BMI levels [30];
this constitutes an independent factor for unfavorable
prognosis [30]. In other clinical settings, SHBG
has been linked with the nutrition status, metabolic
syndrome, hyperinsulinemia, and insulin resistance
[3133]. Our observations are the first report relating
the circulating SHBG level to the efficacy of reflex
control of cardiorespiratory functioning in the clinical
setting of a cardiovascular disease. This relationship
may be expected because the autonomic nerve centers
reveal a high affinity to SHBG, and SHBG has been
shown to modify the functioning of these structures in
experimental studies [29].
Our study has certain limitations. The first one is
the relatively low number of examined subjects with
systolic HF, which is mainly due to the very laborious
and time-consuming character of physiological
measurements (in particular, that of HCS). Second,
we would like to point out that we have assessed in
our study the functioning of endocrine glands (gonads,
adrenals) using baseline circulating levels of produced
and released hormones without the comprehensive
and dynamic assessment of the entire hypothalamic-
hypophyseal-gonadal and hypothalamic-hypophyseal-
adrenal axes. We believe that the latter information
is not obligatory for full interpretation of the results,
as the hormone parameters analyzed in our study
are considered standard hormone measures used in
everyday clinical practice.
Finally, we need to acknowledge the observational
character of our study, as we have not assessed the
F i g. 2. Relationship between the serum level of
sex hormonebinding globulin (abscissa, nM) and
hypercapnic chemoreceptor sensitivity (ordinate,
liter/min·mm Hg) in patients with mild systolic heart
failure.
Р и с. 2. Взаємовідношення рівнів глобуліну,
що зв’язує статеві гормони (вісь абсцис, нМ),
та хемочутливості до гіперкапнії (вісь ординат,
л/хв·мм рт. ст.) у пацієнтів з помірною систолічною
серцевою недостатністю.
1.0
liter/min · mm Hg
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
20 30 40 50 60 70 80 90 100 nM
r = –0.43
P < 0.05
NEUROPHYSIOLOGY / НЕЙРОФИЗИОЛОГИЯ.—2013.—T. 45, № 2154
J. MAJ, A. RYDLEWSKA, B. PONIKOWSKA
precise mechanism responsible for the observed
relationships. The above interesting and intriguing
results need further experimental studies.
Thus, men with systolic HF at the early stage of
heart disease demonstrate augmented HCS that is
particularly increased in subjects with reduced serum
IGF1 and higher serum SHBG levels. Thus suggests
that some hormones with the respective receptors
in the autonomic centers may modify the reflex
mechanisms of cardiorespiratory control in the clinical
setting of cardiovascular pathology. Hence, modified
levels of SHBG and IGF1 may be a factor responsible
for augmented ventilation and subjective feeling of
dyspnea in patients with HF.
Acknowledgments. This research was financially supported
by the State Committee for Scientific Research (Poland) grant
No. NN519 580838.
Ю. Май1, A. Ридлевська1,2, Б. Поніковська3, В. Банасяк1,
П. Поніковський1,2, Є. Янковська1,2
ХЕМОЧУТЛИВІСТЬ ДО ГІПЕРКАПНІЇ У ПАЦІЄНТІВ
ІЗ СЕРЦЕВОЮ НЕДОСТАТНІСТЮ: КОРЕЛЯЦІЯ ЗІ
ЗМІЩЕННЯМИ РІВНІВ ІНСУЛІНПОДІБНОГО ФАКТОРА
РОСТУ ТИПУ 1 ТА ГЛОБУЛІНУ, ЩО ЗВ’ЯЗУЄ СТАТЕВІ
ГОРМОНИ
1 Військовий шпиталь, Вроцлав (Польща).
2 Вроцлавський медичний університет (Польща).
Р е з ю м е
У пацієнтів із серцевою недостатністю (СН) навіть на ран-
ніх стадіях захворювання розвивається автономний дис-
баланс паралельно з розладами контролю серцевосудин-
ної системи та відхиленнями метаболізму деяких гормонів
від норми. Ми досліджували хемочутливість до гіперкапнії
(HCS) у 34 чоловіків із СН, використовуючи метод зворот-
ного дихання. Така чутливість визначалась як нахил лінії
регресії при співставленні хвилинного об’єму вентиляції
(л/хв) та кінцевої концентрації двооксиду вуглецю (мм рт. ст.).
Рівні тестостерону, дигідроепіандростерону сульфату, інсу-
лінподібного фактора росту типу 1 (IGF1), глобуліну, що
зв’язує статеві гормони (SHBG), естрадіолу та кортизолу
визначали в сироватці крові, використовуючи імунологічні
методики. Як виявилося, зв’язки між рівнем HCS, з одно-
го боку, та клінічними показниками, застосованою терапією
та супутніми захворюваннями – з другого, були відсутніми
(в усіх випадках P > 0.2). Підвищена HCS супроводжувала-
ся підвищеними рівнями SHBG (для концентрацій у нано-
молях на 1 л r = 0.43, P < 0.05, а для нормованих значень,
наведених щодо певної вікової групи, r = 0.62, P < 0.001)
та низькими рівнями IGF1 (для концентрацій у наногра-
мах на 1 мл та для наведених нормованих значень r = –0.49,
P < 0.05 та r = –0.47, P = 0.007 відповідно). Значення HCS
не виявляли будьяких зв’язків з рівнями всіх досліджених
гормонів у сироватці. Це дозволяє думати, що гормональні
стимули можуть помітно модифікувати рефлекторні меха-
нізми контролю серцевосудинної системи у клінічних ви-
падках її патологій.
REFERENCES
1. S. D. Anker, E. A. Jankowska, and D. O. Okonko, “Therapeutic
patents for chronic heart failure: a review of patent applications
from 1996 to 2002,” Expert. Opin. Ther. Patents, 14, No. 5,
639654 (2004).
2. E. A. Jankowska, P. Ponikowski, M. F. Piepoli, et al.,
“Autonomic imbalance and immune activation in chronic
heart failure – pathophysiological links,” Cardiovascul. Res.,
3, 434445 (2006).
3. V. Dubreuil, N. Ramanantsoa, D. Trochet, et al., “A human
mutation in Phox2b causes lack of CO2 chemosensitivity, fatal
central apnea, and specific loss of parafacial neurons,” Proc.
Natl. Acad. Sci. USA, 105, No. 3, 10671072 (2008).
4. J. A. Soares BarretoFilho, F. M. ConsolimColombo,
H. Ferreira Lopes, et al., “Dysregulation of peripheral and
central chemoreflex responses in Chagas’ heart disease
patients without heart failure,” Circulation, 104, No. 15,
17921798 (2001).
5. P. Ponikowski, T. P. Chua, S. D. Anker, et al., “Peripheral
chemoreceptor hypersensitivity: an omnous sign in patients
with chronic heart failure,” Circulation, 104, 544549 (2001).
6. P. Ponikowski, T. P. Chua, M. Piepoli, et al., “Augmented
peripheral chemosensitivity as a potential input to baroreflex
impairment and autonomic imbalance in chronic heart failure,”
Circulation, 96, No. 8, 25862594 (1997).
7. T. Kara, K. Narkiewicz, and V. K. Somers, “Chemoreflexes –
physiology and clinical implications,” Acta Physiol. Scand.,
177, No. 3, 377384 (2003).
8. J. M. Nappi and A. Sieg, “Aldosterone and aldosterone
receptor antagonists in patients with chronic heart failure,”
Vascul. Health Risk Manag., 7, 353363 (2011).
9. E. A. Jankowska, B. Biel, J. Majda, et al., “Anabolic deficiency
in men with chronic heart failure: Prevalence and detrimental
impact on survival,” Circulation, 114, 18291837 (2006).
10. E. A. Jankowska, J. Jakubaszko, A. Cwynar, et al., “Bone
mineral status and bone loss over time in men with chronic
heart failure,” Eur. J. Heart Fail., 11, No. 1, 2838 (2009).
11. E. A. Jankowska, A. Drohomirecka, B. Ponikowska,
et al., “Deficiencies in circulating testosterone and
dehydroepiandrosterone sulfate and depression in men with
systolic chronic heart failure,” Eur. J. Heart Fail., 12, No. 9,
966972 (2010).
12. E. A. Jankowska, G. Filippatos, B. Ponikowska, et al.,
“Reduction in circulating testosterone relates to exercise
capacity in men with chronic heart failure,” J. Card. Fail., 15,
No. 5, 442450 (2009).
13. E. A. Jankowska, K. WegrzynowskaTeodorczyk, B. Poni
kowska, et al., “Combined testosterone and insulinlike
growth factor deficiency impairs quadriceps strength in men
with chronic heart failure,” Eur. Heart J., 29, Abstract Suppl.,
306 (2008).
14. E. A. Jankowska, J. Maj, B. Ponikowska, et al., “Deficiencies
NEUROPHYSIOLOGY / НЕЙРОФИЗИОЛОГИЯ.—2013.—T. 45, № 2 155
HYPERCAPNIC CHEMOSENSITIVITY IN PATIENTS WITH HEART FAILURE
in testosterone and insulinlike growth factor type 1 predict
the occurrence of anemia in men with systolic chronic heart
failure,” Eur. Heart J., 30, Abstract Suppl., 830 (2009).
15. E. A. Jankowska, A. Drohomirecka, B. Ponikowska,
et al., “Deficiencies in circulating testosterone and
dehydroepiandrosterone sulfate, and depression in men with
systolic chronic heart failure,” Eur. J. Heart Fail., 12, No. 9,
966973 (2010).
16. E. A. Jankowska, P. Rozentryt, B. Ponikowska, et al.,
“Circulating estradiol and mortality in men with systolic
chronic heart failure,” J. Am. Med. Assoc., 301, No. 18, 1892
1901 (2009).
17. B. StoffelWagner, “Neurosteroid metabolism in the human
brain,” Eur. J. Endocrinol., 145, No. 6, 669679 (2001).
18. E. P. GomezSanchez, “Mineralocorticoid receptors in the
brain and cardiovascular regulation: minority rule?” Trends
Endocrinol. Metab., 22, No. 5, 179187 (2011).
19. U. Schibler and S. A. Brown, “Enlightening the adrenal gland,”
Cell Metab., 2, No. 5, 278281 (2005).
20. V. Joseph, Y. Dalmaz, J. M. CottetEmard, and J. M. Pequignot,
“Dexamethasone’s influence on tyrosine hydroxylase activity
in the chemoreflex pathway and on the hypoxic ventilatory
response,” Pflügers Arch., 435, No. 6, 834839 (1998).
21. T. M. Saleh, A. E. Cribb, and B. J. Connell, “Estrogeninduced
recovery of autonomic function after middle cerebral artery
occlusion in male rats,” Am. J. Physiol. (Regulat. Integrat.
Comp. Physiol.), 281, No. 5, 15311539 (2001).
22. L. J. DeGroot and J. L. Jamesom, Endocrinology, Elsevier
Saunders, Philadelphia (2006).
23. T. P. Chua, P. Ponikowski, and A. J. Coats, “Chemoreflexes in
heart failure,” Circulation, 96, No. 6, 20902091 (1997).
24. A. Rydlewska, B. Ponikowska, L. BorodulinNadzieja, et
al., “Assessment of chemoreflex involved in reflex cardio
respiratory control,” Przegl. Lek., 68, No. 3, 179183 (2011).
25. D. P. White, B. K. Schneider, R. J. Santen, et al., “Influence
of testosterone on ventilation and chemosensitivity in male
subjects,” J. Appl. Physiol., 59, No. 5, 14521457 (1985).
26. R. R. Grunstein, K. Y. Ho, M. BerthonJones, et al., “Central
sleep apnea is associated with increased ventilatory response
to carbon dioxide and hypersecretion of growth hormone in
patients with acromegaly,” Am. J. Respir. Crit. Care Med.,
150, No. 2, 496502 (1994).
27. R. E. Schmidt, D. A. Dorsey, L. N. Beaudet, et al., “Insulin
like growth factor I reverses experimental diabetic autonomic
neuropathy,” Am. J. Pathol., 155, No. 5, 16511660 (1999).
28. S. D. Anker, M. Volterrani, C. D. Pflaum, et al., “Acquired
growth hormone resistance in patients with chronic heart
failure: implications for therapy with growth hormone,” J. Am.
Coll. Cardiol., 38, No. 2, 443452 (2001).
29. E. A. Jankowska and P. Ponikowski, “Sex hormonebinding
globulin and heart failure: a passive carrier of steroid hormones
or an active hormone itself?” Rev. Esp. Cardiol., 62, No. 12,
13531355 (2009).
30. D. A. PascualFigal, P. L. Tornel, F. Nicolás, et al., “Sex
hormonebinding globulin: a new marker of disease severity
and prognosis in men with chronic heart failure,” Rev. Esp.
Cardiol., 62, No. 12, 13811387 (2009).
31. J. D. Caldwell, R. A. Shapiro, G. F. Jirikowski, and F. Suleman,
“Internalization of sex hormonebinding globulin into neurons
and brain cells in vitro and in vivo,” Neuroendocrinology, 86,
No. 2, 8493 (2007).
32. A. S. Morisset, K. Blouin, and A. Tchernof, “Impact of diet
and adiposity on circulating levels of sex hormonebinding
globulin and androgens,” Nutr. Rev., 66, 506516 (2008).
33. A. Onat, G. Hergenç, A. Karabulut, et al., “Serum sex hormone
binding globulin, a determinant of cardiometabolic disorders
independent of abdominal obesity and insulin resistance in
elderly men and women,” Metabolism, 56, 13561362 (2007).
|