A Connection Formula of the Hahn-Exton q-Bessel Function

We show a connection formula of the Hahn-Exton q-Bessel function around the origin and the infinity. We introduce the q-Borel transformation and the q-Laplace transformation following C. Zhang to obtain the connection formula. We consider the limit p→1⁻ of the connection formula.

Збережено в:
Бібліографічні деталі
Дата:2011
Автор: Morita, T.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2011
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/148080
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:A Connection Formula of the Hahn-Exton q-Bessel Function / T. Morita // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 9 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-148080
record_format dspace
spelling irk-123456789-1480802019-02-17T01:26:29Z A Connection Formula of the Hahn-Exton q-Bessel Function Morita, T. We show a connection formula of the Hahn-Exton q-Bessel function around the origin and the infinity. We introduce the q-Borel transformation and the q-Laplace transformation following C. Zhang to obtain the connection formula. We consider the limit p→1⁻ of the connection formula. 2011 Article A Connection Formula of the Hahn-Exton q-Bessel Function / T. Morita // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 9 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 33D15; 34M40; 39A13 DOI: http://dx.doi.org/10.3842/SIGMA.2011.115 http://dspace.nbuv.gov.ua/handle/123456789/148080 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We show a connection formula of the Hahn-Exton q-Bessel function around the origin and the infinity. We introduce the q-Borel transformation and the q-Laplace transformation following C. Zhang to obtain the connection formula. We consider the limit p→1⁻ of the connection formula.
format Article
author Morita, T.
spellingShingle Morita, T.
A Connection Formula of the Hahn-Exton q-Bessel Function
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Morita, T.
author_sort Morita, T.
title A Connection Formula of the Hahn-Exton q-Bessel Function
title_short A Connection Formula of the Hahn-Exton q-Bessel Function
title_full A Connection Formula of the Hahn-Exton q-Bessel Function
title_fullStr A Connection Formula of the Hahn-Exton q-Bessel Function
title_full_unstemmed A Connection Formula of the Hahn-Exton q-Bessel Function
title_sort connection formula of the hahn-exton q-bessel function
publisher Інститут математики НАН України
publishDate 2011
url http://dspace.nbuv.gov.ua/handle/123456789/148080
citation_txt A Connection Formula of the Hahn-Exton q-Bessel Function / T. Morita // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 9 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT moritat aconnectionformulaofthehahnextonqbesselfunction
AT moritat connectionformulaofthehahnextonqbesselfunction
first_indexed 2025-07-12T18:10:56Z
last_indexed 2025-07-12T18:10:56Z
_version_ 1837465714416418816
fulltext Symmetry, Integrability and Geometry: Methods and Applications SIGMA 7 (2011), 115, 11 pages A Connection Formula of the Hahn–Exton q-Bessel Function Takeshi MORITA Graduate School of Information Science and Technology, Osaka University, 1-1 Machikaneyama-machi, Toyonaka, 560-0043, Japan E-mail: t-morita@cr.math.sci.osaka-u.ac.jp Received May 11, 2011, in final form December 14, 2011; Published online December 16, 2011 http://dx.doi.org/10.3842/SIGMA.2011.115 Abstract. We show a connection formula of the Hahn–Exton q-Bessel function around the origin and the infinity. We introduce the q-Borel transformation and the q-Laplace transformation following C. Zhang to obtain the connection formula. We consider the limit p→ 1− of the connection formula. Key words: Hahn–Exton q-Bessel function; q-Borel transformation; connection problems 2010 Mathematics Subject Classification: 33D15; 34M40; 39A13 1 Introduction In this paper, we show a connection formula of the Hahn–Exton q-Bessel function J (3) ν (x; q). At first, we review the Bessel function and q-analogues of the Bessel function. The Bessel equation d2u dz2 + 1 z du dz + ( 1− ν2 z2 ) u = 0 has a solution u(z) = Jν(z), J−ν(z). Here, the Bessel function Jν(z) is Jν(z) = 1 Γ(ν + 1) (z 2 )ν 0F1 ( −, ν + 1,−z 2 4 ) . The degenerated confluent hypergeometric function 0F1(−, α, z) is defined by 0F1(−, α, z) = ∑ n≥0 1 (α)nn! zn, (α)n = α{α+ 1} · · · {α+ (n− 1)}. Both Jν(z) and J−ν(z) are linearly independent if ν 6∈ Z. It is known that there exists three different q-analogues of the Bessel function. J (1) ν (x; q) := (qν+1; q)∞ (q; q)∞ (x 2 )ν 2ϕ1 ( 0, 0; qν+1; q,−x 2 4 ) , |x| < 2, J (2) ν (x; q) := (qν+1; q)∞ (q; q)∞ (x 2 )ν 0ϕ1 ( −; qν+1; q,−q ν−1x2 4 ) , x ∈ C, J (3) ν (x; q) := (qν+1; q)∞ (q; q)∞ xν1ϕ1 ( 0; qν+1; q, qx2 ) , x ∈ C. Here, (a; q)n := { 1, n = 0, (1− a)(1− aq) · · · (1− aqn−1), n ≥ 1, mailto:t-morita@cr.math.sci.osaka-u.ac.jp http://dx.doi.org/10.3842/SIGMA.2011.115 2 T. Morita (a; q)∞ = lim n→∞ (a; q)n and (a1, a2, . . . , am; q)∞ = (a1; q)∞(a2; q)∞ · · · (am; q)∞. Moreover, the basic hypergeometric series rϕs is rϕs(a1, . . . , ar; b1, . . . , bs; q, x) := ∑ n≥0 (a1, . . . , ar; q)n (b1, . . . , bs; q)n(q; q)n [ (−1)nq n(n−1) 2 ]1+s−r xn. The first and the second one are called Jackson’s first and second q-Bessel function and the third one is called the Hahn–Exton q-Bessel function. They satisfy the following q-difference equations: J (1) ν : u(xq)− ( qν/2 + q−ν/2 ) u(xq1/2) + ( 1 + x2 4 ) u(x) = 0, J (2) ν : ( 1 + qx2 4 ) u(xq)− ( qν/2 + q−ν/2 ) u ( xq1/2 ) + u(x) = 0, J (3) ν : u(xq)− { (qν/2 + q−ν/2)− q−ν/2+1x2 } u ( xq1/2 ) + u(x) = 0. (1) The limits of these q-analogues of the Bessel function are the Bessel function when q → 1−: lim q→1− J (k) ν ((1− q)x; q) = Jν(x), k = 1, 2 and lim q→1− J (3) ν ((1− q)x; q) = Jν(2x). The relation between J (1) ν (x; q) and J (2) ν (x; q) was found by Hahn [3] as follows: J (2) ν (x; q) = ( −x 2 4 ; q ) ∞ J (1) ν (x; q). (2) Connection problems of the q-difference equation between the origin and the infinity are studied by G.D. Birkhoff [1]. We review connection formulae for several q-difference functions. 1. Watson’s formula. In 1910 [6], Watson showed the connection formula of the basic hyper- geometric function 2ϕ1 as follows: 2ϕ1 (a, b; c; q;x) = (b, c/a; q)∞(ax, q/ax; q)∞ (c, b/a; q)∞(x, q/x; q)∞ 2ϕ1 (a, aq/c; aq/b; q; cq/abx) + (a, c/b; q)∞(bx, q/bx; q)∞ (c, a/b; q)∞(x, q/x; q)∞ 2ϕ1 (b, bq/c; bq/a; q; cq/abx) . 2. Connection formula of J (1) ν (x; q). C. Zhang has given some connection formulae for the solutions of the q-difference equations of confluent type [7, 8] and [9]. In [8], Zhang has shown connection formulae for J (1) ν (x; q) and J (2) ν (x; q). The connection formula of J (1) ν (x; q) is given by( α√ px ; p ) ∞ θp ( −α x ) 2ϕ1 ( pν+ 1 2 , p−ν+ 1 2 ;−p; p, α √ px ) A Connection Formula of the Hahn–Exton q-Bessel Function 3 = 1 θp ( −α x )  θp ( −αq ν 2 x ) (q, q−ν ; q)∞ 2ϕ1 ( 0, 0; qν+1; q,−x 2 4 ) + θp ( −αq− ν 2 x ) (q, qν ; q)∞ 2ϕ1 ( 0, 0; q−ν+1; q,−x 2 4 ) , (3) where q = p2 and α2 = −4q3/2. The connection formula of J (2) ν (x; q) is obtained by (3) and (2). But it is not known the con- nection formula of the Hahn–Exton q-Bessel function. The Hahn–Exton q-Bessel equations (1) has two analytic solutions u(x) = J (3) ν (x), J (3) −ν (xp−ν) around x = 0 and has one analytic solution z (1/x) = 1 θp(−pν+2/x) ∑ n≥0 anx −n, a0 = 1. We show a connection formula of J (3) ν (x; q) in Section 2 as follows: Theorem 1. For any x ∈ C∗ \ [pν+2; p], z ( 1 x ) = 1 (p−2ν , p; p)∞ θp ( −p2ν+2 x ) θp ( −pν+2 x ) 1ϕ1 ( 0, p1+2ν ; p, x ) + 1 (p2ν , p; p)∞ θp ( −p2 x ) θp ( −pν+2 x ) 1ϕ1 ( 0, p1−2ν ; p, p−2νx ) . (4) Here, θp(·) is the theta function of Jacobi and [λ; q] is the q-spiral (see Section 2). We use the q-Borel transformation and the q-Laplace transformation which is defined by C. Zhang in [8]. In Section 3, we consider the limit p → 1− of the connection formula. If we take a suitable limit p→ 1− of (4), we obtain H(2) ν (√ z ) = −ieνπi sin νπ { Jν (√ z ) − e−νπiJ−ν (√ z )} . Here, H (2) ν (z) is the Hankel function of the second kind. Thus we obtain a connection formula of the Bessel function as a limit p→ 1− of (4). 2 The connection formula In this section, we give a connection formula of the Hahn–Exton q-Bessel function. We introduce the p-Borel transformation and the p-Laplace transformation to obtain the connection formula between the origin and the infinity. These transformations are useful to consider connection problems. We assume that q ∈ C∗ satisfies 0 < |q| < 1 and q = p2. The q-difference operator σq is given by σqf(x) = f(qx). 2.1 The theta function of Jacobi Before we study connection problems, we review the theta function of Jacobi. The theta function of Jacobi is given by the following series: Definition 1. For any x ∈ C∗, θq(x) = θ(x) := ∑ n∈Z q n(n−1) 2 xn. 4 T. Morita We denote by θq(x) or more shortly θ(x). The theta function satisfies Jacobi’s triple product identity: θ(x) = ( q,−x,− q x ; q ) ∞ . The theta function satisfies the q-difference equation as follows θ(qkx) = q− k(k−1) 2 x−kθ(x), ∀x ∈ C∗. The theta function has the inversion formula xθ(1/x) = θ(x). For all fixed λ ∈ C∗, we define a q-spiral [λ; q] := λqZ = {λqk : k ∈ Z}. We remark that θ ( λqk/x ) = 0 if and only if x ∈ [−λ; q]. 2.2 The Hahn–Exton q-Bessel function The Hahn–Exton q-Bessel function is defined by J (3) ν (x; q) := (qν+1; q)∞ (q; q)∞ xν ∑ n≥0 (−1)nq n(n−1) 2 (qν+1, q; q)n ( qx2 )n . The function J (3) ν (x; q) satisfies the q-difference equation[ σ2p − { (pν + p−ν)− x2p2−ν } σp + 1 ] y(x) = 0. (5) If we replace ν by −ν and x by xp−ν , we obtain J (3) −ν (xp−ν ; q) which is another solution of (5) around the origin. This solution corresponds to the classical Neumann function Yν(x) [5]. We consider the behavior of equation (5) around the infinity. We set 1/t, formally t2 7→ t and z(t) = y(1/t). Then z(t) satisfies[ σ2p − { (pν + p−ν)− p−2−ν t } σp + 1 ] z (t) = 0. (6) We set E(t) = 1/θp(−pν+2t) and f(t) = ∑ n≥0 ant n, a0 = 1. We assume that z(t) can be described as z(t) = E(t)f(t) = 1 θp(−pν+2t) ∑ n≥0 ant n  . Since E(t) satisfies the following q-difference equation σpE(t) = −pν+2tE(t), σ2pE(t) = p2ν+5t2E(t), we can check out that the function f(t) satisfies the equation{ p2ν+5t2σ2p + pν+2(pν + p−ν)tσp − σp + 1 } f(t) = 0. (7) 2.3 The p-Borel transformation and the p-Laplace transformation We define the p-Borel transformation and the p-Laplace transformation to solve the equation (7), following Zhang [8]. A Connection Formula of the Hahn–Exton q-Bessel Function 5 Definition 2. For f(t) = ∑ n≥0 ant n, the p-Borel transformation is defined by g(τ) = (Bpf) (τ) := ∑ n≥0 anp −n(n−1) 2 τn, and the p-Laplace transformation is given by (Lpg) (t) := 1 2πi ∫ |τ |=r g(τ)θp ( t τ ) dτ τ . Here, r0 > 0 is enough small number. The p-Borel transformation is considered as a formal inverse of the p-Laplace transformation. Lemma 1. We assume that the function f can be p-Borel transformed to the analytic func- tion g(τ) around τ = 0. Then, Lp ◦ Bpf = f. Proof. We can prove this lemma calculating residues of the p-Laplace transformation around the origin. � The p-Borel transformation has the following operational relation. Lemma 2. For any l,m ∈ Z≥0, Bp ( tmσlp ) = p− m(m−1) 2 τmσl−mp Bp. Applying the p-Borel transformation to the equation (7) and using Lemma 2, g(τ) satisfies the first order difference equation g(pτ) = ( 1 + p2ν+2τ ) ( 1 + p2τ ) g(τ). Since g(0) = 1, we get an infinite product of g(τ): g(τ) = 1 (−p2ν+2τ ; p)∞(−p2τ ; p)∞ . Then g(τ) has single poles at{ −p−2ν−2−k,−p−2−k; k ∈ Z≥0 } . We set 0 < r < r0 := min { 1 |p2ν+2| , 1 |p2| } . and choose the radius r > 0 such that 0 < r < r0. By Cauchy’s residue theorem, the p-Laplace transform of g(τ) is f(t) = 1 2πi ∫ |τ |=r g(τ)θp ( t τ ) dτ τ = − ∑ k≥0 Res { g(τ)θp ( t τ ) 1 τ ; τ=−p−2ν−2−k } − ∑ k≥0 Res { g(τ)θp ( t τ ) 1 τ ; τ=−p−2−k } , where 0 < r < r0. To calculate the residue, we use the following lemma. 6 T. Morita Lemma 3. For any k ∈ N, λ ∈ C∗, we have 1. Res { 1 (τ/λ; p)∞ 1 τ : τ = λp−k } = (−1)k+1p k(k+1) 2 (p; p)k(p; p)∞ , 2. 1 (λp−k; p)∞ = (−λ)−kp k(k+1) 2 (λ; p)∞ (p/λ; p)k , λ 6∈ pZ. Summing up all of the residues, we obtain the convergent series f(t) as follows f(t) = θp ( −p2ν+2t ) (p−2ν , p; p)∞ 1ϕ1 ( 0, p1+2ν ; p, x ) + θp ( −p2t ) (p2ν , p; p)∞ 1ϕ1 ( 0, p1−2ν ; p, p−2νx ) , where xt = 1. Therefore, we acquire the connection formula for z(t) = E(t)f(t). 3 The limit of the connection formula In this section, we show that the limit p → 1− of the connection formula gives a connection formula of the Bessel function. At first, we assume that 0 < p < 1 and 0 < √ p < 1. For the Bessel function, we set the Hankel function of the first and the second kind H (1) ν (z) and H (2) ν (z). Definition 3. The Hankel function of the first kind is given by H(1) ν (z) := Γ ( 1 2 − ν ) πi √ π (z 2 )ν ∫ (1+) 1+∞i eizt ( t2 − 1 )ν− 1 2 dt, −π < arg z < 2π. The Hankel function of the second kind is defined by H(2) ν (z) := Γ ( 1 2 − ν ) πi √ π (z 2 )ν ∫ (−1−) −1+∞i eizt ( t2 − 1 )ν− 1 2 dt, −2π < arg z < π. The contour for H (1) ν (z) is a path starting from t = +1 +∞i, rounding the circle around t = 1 counterclockwise, and going back to t = +1 +∞i. Moreover, the contour for H (2) ν (z) is a path starting from t = −1 +∞i, rounding the circle around t = 1 clockwise, and going back to t = −1 +∞i. The Hankel functions can be written by Jν(z): H(1) ν (z) = ie−νπi sin νπ { Jν(z)− eνπiJ−ν(z) } , (8) H(2) ν (z) = − ieνπi sin νπ { Jν(z)− e−νπiJ−ν(z) } . (9) The Hankel functions have asymptotic expansions around z = 0 [4]: H(1) ν (z) ∼ ( 2 πz ) 1 2 eiζ ∑ s≥0 is As(ν) zs , −π + δ ≤ arg z ≤ 2π − δ, H(2) ν (z) ∼ ( 2 πz ) 1 2 e−iζ ∑ s≥0 (−i)sAs(ν) zs , −2π + δ ≤ arg z ≤ π − δ, as z →∞. Here, δ is an any small constant, As(ν) = (4ν2 − 12)(4ν2 − 32) · · · { 4ν2 − (2s− 1)2 } s!8s and ζ = z − 1 2 νπ − 1 4 π. In this sense, (8) and (9) considered as connection formula of the Bessel equation. A Connection Formula of the Hahn–Exton q-Bessel Function 7 3.1 Limit of the connection formula We rewrite the connection formula in Theorem 1 in order to take a limit p → 1−. We set new functions hν(t; p) and J±ν (x; p). We set hν(t; p) := (p1/2, p1/2; p)∞z(t). For any x ∈ C∗ \ [−λ; p] and λ ∈ C∗, J+ ν,λ(x; p) is J+ ν,λ(x; p) := (pν+1; p)∞ (p; p)∞ θp ( λpν x ) θp ( λ x ) 1ϕ1 ( 0; p1+2ν ; p, x ) . Similarly, J−ν,λ(x; p) is J−ν,λ(x; p) := (pν+1; p)∞ (p; p)∞ θp ( λpν x ) θp ( λ x ) 1ϕ1 ( 0; p1+2ν ; p, p2νx ) . We remark that the function θp(λp ν/x)/θp(λ/x) satisfies the following q-difference equation u(px) = pνu(x), which is also satisfied by the function u(x) = xν . We remark that the pair (J+ ν,λ(x; p), J−−ν,λ(x; p)) gives a fundamental system of solutions of equation (6) if ν 6∈ Z. We set the function C+ ν (λ, t; p) and C−ν (λ, t; p) as follow: Definition 4. For any λ ∈ C∗, C+ ν (λ, t; p) is C+ ν (λ, t; p) := (p 1 2 , p 1 2 ; p)∞ (pν+1, p−2ν ; p)∞ θp(−p2ν+2t) θp(−pν+2t) θp(λt) θp(λpνt) . Similarly, the function C−ν (λ, t; p) is C−ν (λ, t; p) := (p 1 2 , p 1 2 ; p)∞ (p−ν+1, p2ν ; p)∞ θp(−p2t) θp(−pν+2t) θp(λt) θp(λp−νt) . Then, C+ ν (λ, t; p) and C−ν (λ, t; p) are single valued as a function of t. The function C+ ν (λ, t; p) and C−ν (λ, t; p) are the p-elliptic functions. By using these new functions, our connection formula is rewritten by hν ( 1 x ; p ) = C+ ν ( λ, 1 x ; p ) J+ ν (x; p) + C−ν ( λ, 1 x ; p ) J−−ν,λ(x; p). Theorem 2. For any x ∈ C∗ \ (−∞, 0] where arg x ∈ (−π, π), we have lim p→1− hν ( 1 (1− p)2x ; p ) = −ie−νπiH(2) 2ν (2 √ x). Here, H (2) 2ν (·) is the Hankel function of the second kind. The aim of this section is to give a proof of the theorem above. By the definition, hν ( 1/{(1− p)2x}; p ) can be described as follows hν ( 1 (1− p)2x ; p ) = { (p 1 2 , p 1 2 ; p)∞ (p−2ν , p; p)∞ (1− p)2ν }θp ( − p2ν+2 x(1−p)2 ) θp ( − pν+2 x(1−p)2 )(1− p)−2ν  . × { 1ϕ1 ( 0; p1+2ν ; p, (1− p)2x )} 8 T. Morita + { (p 1 2 , p 1 2 ; p)∞ (p2ν , p; p)∞ (1− p)−2ν }θp ( − p2 x(1−p)2 ) θp ( − pν+2 x(1−p)2 )(1− p)2ν  × { 1ϕ1 ( 0; p1−2ν ; p, p−2ν(1− p)2x )} . (10) We consider the limit of each part {·}. Lemma 4. For any ν ∈ C∗ \ Z, we have lim p→1− (p 1 2 , p 1 2 ; p)∞ (p−2ν , p; p)∞ (1− p)2ν = − 1 sin(2νπ)Γ(2ν + 1) . Proof. We can check out as follows (p 1 2 , p 1 2 ; p)∞ (p−2ν , p; p)∞ (1− p)2ν = (p;p)∞ (p−2ν ;p)∞ (1− p)1+2ν{ (p;p)∞ (p 1 2 ;p)∞ (1− p) 1 2 }{ (p;p)∞ (p 1 2 ;p)∞ (1− p) 1 2 } = Γp(−2ν) Γp ( 1 2 ) Γp ( 1 2 ) . Here, Γq(·) is Jackson’s q-gamma function which is defined by Γq(x) := (q; q)∞ (qx; q)∞ (1− q)1−x, 0 < q < 1. This function satisfies lim q→1− Γq(x) = Γ(x) [2]. Therefore, lim p→1− (p 1 2 , p 1 2 ; p)∞ (p−2ν , p; p)∞ (1− p)2ν = Γ(−2ν) Γ ( 1 2 ) Γ ( 1 2 ) . By Euler’s reflection formula of the gamma function, we get Γ(−2ν) Γ ( 1 2 ) Γ ( 1 2 ) = − 1 sin(2νπ)Γ(2ν + 1) . Therefore, we get the conclusion. � If we replace ν by −ν, we get the limit lim p→1− (p 1 2 , p 1 2 ; p)∞ (p2ν , p; p)∞ (1− p)−2ν = 1 sin(2νπ)Γ(1− 2ν) . In [8], the following proposition can be found: Proposition 1. For any x ∈ C∗ (−π < arg x < π), we have lim p→1− θp ( pν1 (1−p2)x ) θp ( pν2 (1−p2)x ) (1− p2)ν2−ν1 = xν1−ν2 , and lim p→1− θp ( − pν1 (1−p2)x ) θp ( − pν2 (1−p2)x ) (1− p2)ν2−ν1 = (−x)ν1−ν2 . A Connection Formula of the Hahn–Exton q-Bessel Function 9 Lemma 5. For any x ∈ C∗ (−π < arg x ≤ π) and fixed constant K, we have θp(− √ p)θp ( −K x ) = θ√p (√ K x ) θ√p ( − √ K x ) . Proof. From Jacobi’s triple product identity and (a2; q2)n = (a,−a; q)n, we obtain ( √ p; √ p)∞ (−√p;√p)∞ θp ( −K x ) = θ√p (√ K x ) θ√p ( − √ K x ) . We remark that ( √ p; √ p)∞/(− √ p; √ p)∞ can be rewritten as follows [2]: ( √ p; √ p)∞ (−√p;√p)∞ = ∑ n∈Z (−1)n( √ p)n 2 = θp(− √ p). We obtain the conclusion. � Therefore, we obtain the following relation. Corollary 1. For any x ∈ C∗ (−π < arg x ≤ π), we have θp ( p2ν+2 −1 (1−p)2x ) θp ( pν+2 −1 (1−p)2x ) = θ√p ( pν+1 1 (1−p) √ x ) θ√p ( pν+1 −1 (1−p) √ x ) θ√p ( p ν 2 +1 1 (1−p) √ x ) θ√p ( p ν 2 +1 −1 (1−p) √ x ) (11) and θp ( p2 −1 (1−p)2x ) θp ( pν+2 −1 (1−p)2x ) = θ√p ( p 1 (1−p) √ x ) θ√p ( p −1 (1−p) √ x ) θ√p ( p ν 2 +1 1 (1−p) √ x ) θ√p ( p ν 2 +1 −1 (1−p) √ x ) . (12) We consider the limit p→ 1− (i.e., √ p→ 1−) of (11) and (12). Lemma 6. For any x ∈ C∗ \ (−∞, 0] (−π < arg x ≤ π), we have 1. lim p→1− θp ( − p2ν+2 x(1−p)2 ) θp ( − pν+2 x(1−p)2 )(1− p)−2ν = eνπixν and 2. lim p→1− θp ( − p2 x(1−p)2 ) θp ( − pν+2 x(1−p)2 )(1− p)2ν = e−νπix−ν . Proof. Combining Proposition 1 and Corollary 1, we consider the limit √ p→ 1− as follows: θp ( p2ν+2 −1 (1−p)2x ) θp ( pν+2 −1 (1−p)2x ) (1− p)−2ν = θ√p ( pν+1 1 (1−p) √ x ) θ√p ( pν+1 −1 (1−p) √ x ) θ√p ( p ν 2 +1 1 (1−p) √ x ) θ√p ( p ν 2 +1 −1 (1−p) √ x )(1− p)−2ν = θ √ p ( ( √ p)2ν+2 1 (1−(√p)2) √ x ) θ√p ( ( √ p)ν+2 1 (1−{√p)2) √ x ) {1− ( √ p)2 }−ν × θ √ p ( −( √ p)2ν+2 1 (1−(√p)2) √ x ) θ√p ( −( √ p)ν+2 1 (1−{√p)2) √ x ) {1− ( √ p)2 }−ν → ( √ x)ν · (− √ x)ν = (−x)ν = eνπixν , √ p→ 1−. Similarly, we can prove the latter one. We obtain the conclusion. � 10 T. Morita We consider the last part. Lemma 7. For any x ∈ C∗, we have lim p→1− 1ϕ1 ( 0; p1+2ν ; p, (1− p)2x ) = 0F1 (−, 1 + 2ν;−x) and lim p→1− 1ϕ1 ( 0; p1−2ν ; p, p−2ν(1− p)2x ) = 0F1 (−, 1− 2ν;−x) . Proof. We check each of the term of 1ϕ1 ( 0; p1+2ν ; p, (1− p)2x ) = ∑ n≥0 1 (p1+2ν , p; p)n (−1)np n(n−1) 2 { (1− p)2x }n . For any n ≥ 0, 1 (p1+2ν , p; p)n (−1)np n(n−1) 2 { (1− p)2x }n = (1− p)n(1− p)n (p1+2ν ; p)n(p; p)n p n(n−1) 2 (−x)n → 1 (1 + 2ν)n · n! (−x)n , p→ 1−. Summing up all terms, we get∑ n≥0 1 (1 + 2ν)n · n! (−x)n = 0F1 (−, 1 + 2ν;−x) . Therefore, we obtain the conclusion. Similarly, we can prove the latter. � We give the proof of Theorem 2. Proof. Apply Lemma 4, Lemma 6 and Lemma 7 to (10), we obtain hν ( 1 (1− p)2x ; p ) → { − 1 sin(2νπ)Γ(1 + 2ν) } eνπixν0F1 (−, 1 + 2ν;−x) + { 1 sin(2νπ)Γ(1− 2ν) } e−νπix−ν0F1 (−, 1− 2ν;−x) = −eνπiJ2ν (2 √ x) + e−νπiJ−2ν (2 √ x) sin(2νπ) = e−νπi i H (2) 2ν ( 2 √ x ) , p→ 1−. Therefore, we acquire the conclusion. � Acknowledgements The author would like to express his deepest gratitude to Professor Yousuke Ohyama for many valuable comments. The author also expresses his thanks to Professor Lucia Di Vizio for fruitful discussions when she was invited to the University of Tokyo in the winter 2011. The author would like to give thanks to the referee for some useful comments. A Connection Formula of the Hahn–Exton q-Bessel Function 11 References [1] Birkhoff G.D., The generalized Riemann problem for linear differential equations and the allied problems for linear difference and q-difference equations, Proc. Amer. Acad. 49 (1913), 521–568. [2] Gasper G., Rahman M., Basic hypergeometric series, 2nd ed., Encyclopedia of Mathematics and its Appli- cations, Vol. 96, Cambridge University Press, Cambridge, 2004. [3] Hahn W., Beiträge zur Theorie der Heineschen Reihen. Die 24 Integrale der Hypergeometrischen q- Differenzengleichung. Das q-Analogon der Laplace-Transformation, Math. Nachr. 2 (1949), 340–379. [4] Olver F.W.J., Asymptotics and special functions, Computer Science and Applied Mathematics, Academic Press, New York – London, 1974. [5] Swarttouw R.F., Meijer H.G., A q-analogue of the Wronskian and a second solution of the Hahn–Exton q-Bessel difference equation, Proc. Amer. Math. Soc. 129 (1994), 855–864. [6] Watson G.N., The continuation of functions defined by generalized hypergeometric series, Trans. Camb. Phil. Soc. 21 (1910), 281–299. [7] Zhang C., Remarks on some basic hypergeometric series, in Theory and Applications of Special Functions, Dev. Math., Vol. 13, Springer, New York, 2005, 479–491. [8] Zhang C., Sur les fonctions q-Bessel de Jackson, J. Approx. Theory 122 (2003), 208–223. [9] Zhang C., Une sommation discrè pour des équations aux q-différences linéaires et à coefficients, analytiques: théorie générale et exemples, in Differential Equations and Stokes Phenomenon, World Sci. Publ., River Edge, NJ, 2002, 309–329. http://dx.doi.org/10.1017/CBO9780511526251 http://dx.doi.org/10.1002/mana.19490020604 http://dx.doi.org/10.2307/2160480 http://dx.doi.org/10.1007/0-387-24233-3_22 http://dx.doi.org/10.1016/S0021-9045(03)00073-X http://dx.doi.org/10.1142/9789812776549_0012 1 Introduction 2 The connection formula 2.1 The theta function of Jacobi 2.2 The Hahn-Exton q-Bessel function 2.3 The p-Borel transformation and the p-Laplace transformation 3 The limit of the connection formula 3.1 Limit of the connection formula References