Opposite Antipodal Fundamental Solution of Laplace's Equation in Hyperspherical Geometry
Due to the isotropy of d-dimensional hyperspherical space, one expects there to exist a spherically symmetric opposite antipodal fundamental solution for its corresponding Laplace-Beltrami operator. The R-radius hypersphere SdR with R>0, represents a Riemannian manifold with positive-constant sec...
Збережено в:
Дата: | 2011 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2011
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/148085 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Opposite Antipodal Fundamental Solution of Laplace's Equation in Hyperspherical Geometry / H.S. Cohl // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 39 назв. — англ. |