Projective Metrizability and Formal Integrability
The projective metrizability problem can be formulated as follows: under what conditions the geodesics of a given spray coincide with the geodesics of some Finsler space, as oriented curves. In Theorem 3.8 we reformulate the projective metrizability problem for a spray in terms of a first-order part...
Gespeichert in:
Datum: | 2011 |
---|---|
Hauptverfasser: | Bucataru, I., Muzsnay, Z. |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут математики НАН України
2011
|
Schriftenreihe: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/148091 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Projective Metrizability and Formal Integrability / I. Bucataru, Z. Muzsnay // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 32 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
Metrizable ball structures
von: Protasov, I.V.
Veröffentlicht: (2002) -
Metrizable ball structures
von: Protasov, I. V.
Veröffentlicht: (2018) -
A fundamental study on environ-ment geosozologisal metrizations
von: S. I. Kukurudza, et al.
Veröffentlicht: (2015) -
The Profinite Dimensional Manifold Structure of Formal Solution Spaces of Formally Integrable PDEs
von: Güneysu, B., et al.
Veröffentlicht: (2017) -
Formal Integrability for the Nonautonomous Case of the Inverse Problem of the Calculus of Variations
von: Constantinescu, O.
Veröffentlicht: (2012)