Channels and Signal Transduction Pathways in Neurons

Potassium (K⁺) channels constitute the most diverse class of ion channels; these channels are especially important for regulation of the neuronal excitability and provide signaling activity in a variety of ways. These channels are major determinants of the membrane excitability, influencing th...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2015
Автори: Magura, I.S., Bogdanova, N.A., Dolgaya, E.V.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізіології ім. О.О. Богомольця НАН України 2015
Назва видання:Нейрофизиология
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/148154
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Potassium Channels and Signal Transduction Pathways in Neurons / I.S. Magura, N.A. Bogdanova, E.V. Dolgaya // Нейрофизиология. — 2015. — Т. 47, № 1. — С. 81-86. — Бібліогр.: 35 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-148154
record_format dspace
spelling irk-123456789-1481542019-02-18T01:23:04Z Channels and Signal Transduction Pathways in Neurons Magura, I.S. Bogdanova, N.A. Dolgaya, E.V. Материалы VI Конгресса Украинского общества нейро- наук, посвященного 90-летию со дня рождения академика П. Г. Костюка (Киев, 4 – 8 июня 2014 г.) Potassium (K⁺) channels constitute the most diverse class of ion channels; these channels are especially important for regulation of the neuronal excitability and provide signaling activity in a variety of ways. These channels are major determinants of the membrane excitability, influencing the resting potential of the membranes, waveforms and frequencies of action potentials, and thresholds of excitation. Voltage-gated K⁺ channels do not exist as independent units merely responding to changes in the transmembrane potential; these are macromolecular complexes able to integrate a great variety of cellular signals that provide fine tuning of channel activities. Compounds that change K⁺ channel properties are commonly employed as therapeutic agents in a number of pathologies, in particular, arrhythmias, cancer, and neurological disorders (psychoses, epilepsy, stroke, and Alzheimer’s disease). Калієві канали виконують важливі функції у великій кількості шляхів передачі клітинних сигналів у нервовій системі. Складна обробка та інтеграція сигналів, котрі спостерігаються у нейронах, полегшуються через наявність великого набору воротних властивостей іонних каналів, зокрема, таких властивостей потенціалкерованих калієвих каналів. Специфічні сполучення калієвих каналів забезпечують нейронам широкий репертуар характеристик збудливості та надають змогу кожному нейрону відповідати специфічним чином на дію конкретного вхідного сигналу в конкретний момент часу. Властивості багатьох калієвих каналів можуть модулюватися від дією шляхів вторинних месенджерів, активованих нейротрансмітерами та стимулами інших видів. Калієві канали формують найбільш різноманітний клас іонних каналів. Ці канали суттєво важливі для регуляції збудливості нейронів і сигнальної активності, що здійснюється різним чином. Дані канальні структури є основними детермінантами збуливості мембрани, впливаючи на потенціал спокою мембран, форму та частоту потенціалів дії та пороги збудження. Потенціалкеровані калієві канали не існують як незалежні одиниці, в основному відповідальні за зміну мембранного потенціалу; це макромолекулярні комплекси, здатні інтегрувати колосальну кількість клітинних сигналів, котрі реалізують тонку настройку активності каналів. Сполуки, котрі змінюють властивості калієвих каналів, широко використовуються як терапевтичні агенти в таких випадках, як аритмії, ракові захворювання та неврологічні розлади (психози, епілепсія, інсульти та хвороба Альцгеймера). Цілями значної кількості терапевтичних агентів є канали, що не відносяться до калієвих, але "ненавмисно" блокують саме калієві канали. Таке блокування калієвих каналів може зумовлювати потенційно дуже серйозні або навіть смертельні побічні ефекти. 2015 Article Potassium Channels and Signal Transduction Pathways in Neurons / I.S. Magura, N.A. Bogdanova, E.V. Dolgaya // Нейрофизиология. — 2015. — Т. 47, № 1. — С. 81-86. — Бібліогр.: 35 назв. — англ. 0028-2561 http://dspace.nbuv.gov.ua/handle/123456789/148154 576.314.6 en Нейрофизиология Інститут фізіології ім. О.О. Богомольця НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Материалы VI Конгресса Украинского общества нейро- наук, посвященного 90-летию со дня рождения академика П. Г. Костюка (Киев, 4 – 8 июня 2014 г.)
Материалы VI Конгресса Украинского общества нейро- наук, посвященного 90-летию со дня рождения академика П. Г. Костюка (Киев, 4 – 8 июня 2014 г.)
spellingShingle Материалы VI Конгресса Украинского общества нейро- наук, посвященного 90-летию со дня рождения академика П. Г. Костюка (Киев, 4 – 8 июня 2014 г.)
Материалы VI Конгресса Украинского общества нейро- наук, посвященного 90-летию со дня рождения академика П. Г. Костюка (Киев, 4 – 8 июня 2014 г.)
Magura, I.S.
Bogdanova, N.A.
Dolgaya, E.V.
Channels and Signal Transduction Pathways in Neurons
Нейрофизиология
description Potassium (K⁺) channels constitute the most diverse class of ion channels; these channels are especially important for regulation of the neuronal excitability and provide signaling activity in a variety of ways. These channels are major determinants of the membrane excitability, influencing the resting potential of the membranes, waveforms and frequencies of action potentials, and thresholds of excitation. Voltage-gated K⁺ channels do not exist as independent units merely responding to changes in the transmembrane potential; these are macromolecular complexes able to integrate a great variety of cellular signals that provide fine tuning of channel activities. Compounds that change K⁺ channel properties are commonly employed as therapeutic agents in a number of pathologies, in particular, arrhythmias, cancer, and neurological disorders (psychoses, epilepsy, stroke, and Alzheimer’s disease).
format Article
author Magura, I.S.
Bogdanova, N.A.
Dolgaya, E.V.
author_facet Magura, I.S.
Bogdanova, N.A.
Dolgaya, E.V.
author_sort Magura, I.S.
title Channels and Signal Transduction Pathways in Neurons
title_short Channels and Signal Transduction Pathways in Neurons
title_full Channels and Signal Transduction Pathways in Neurons
title_fullStr Channels and Signal Transduction Pathways in Neurons
title_full_unstemmed Channels and Signal Transduction Pathways in Neurons
title_sort channels and signal transduction pathways in neurons
publisher Інститут фізіології ім. О.О. Богомольця НАН України
publishDate 2015
topic_facet Материалы VI Конгресса Украинского общества нейро- наук, посвященного 90-летию со дня рождения академика П. Г. Костюка (Киев, 4 – 8 июня 2014 г.)
url http://dspace.nbuv.gov.ua/handle/123456789/148154
citation_txt Potassium Channels and Signal Transduction Pathways in Neurons / I.S. Magura, N.A. Bogdanova, E.V. Dolgaya // Нейрофизиология. — 2015. — Т. 47, № 1. — С. 81-86. — Бібліогр.: 35 назв. — англ.
series Нейрофизиология
work_keys_str_mv AT magurais channelsandsignaltransductionpathwaysinneurons
AT bogdanovana channelsandsignaltransductionpathwaysinneurons
AT dolgayaev channelsandsignaltransductionpathwaysinneurons
first_indexed 2025-07-12T18:28:21Z
last_indexed 2025-07-12T18:28:21Z
_version_ 1837466811793145856
fulltext NEUROPHYSIOLOGY / НЕЙРОФИЗИОЛОГИЯ.—2015.—T. 47, № 1 81 UDC 576.314.6 I. S. MAGURA,1 N. A. BOGDANOVA,1 and E. V. DOLGAYA1 POTASSIUM CHANNELS AND SIGNAL TRANSDUCTION PATHWAYS IN NEURONS Received June 25, 2014 Potassium (K+) channels constitute the most diverse class of ion channels; these channels are especially important for regulation of the neuronal excitability and provide signaling activity in a variety of ways. These channels are major determinants of the membrane excitability, influencing the resting potential of the membranes, waveforms and frequencies of action potentials, and thresholds of excitation. Voltage-gated K+ channels do not exist as independent units merely responding to changes in the transmembrane potential; these are macromolecular complexes able to integrate a great variety of cellular signals that provide fine tuning of channel activities. Compounds that change K+ channel properties are commonly employed as therapeutic agents in a number of pathologies, in particular, arrhythmias, cancer, and neurological disorders (psychoses, epilepsy, stroke, and Alzheimer’s disease). Keywords: potassium channels, signal function, neurological disorders. INTRODUCTION It is clear that the impact of ion channel research on our understanding of the nervous system is only starting. (F.Bezanilla, 2008). Academician Platon Kostyuk in his monograph published by the Physiological Society (“Plasticity in nerve cell function,” 1998) demonstrated that the most unique feature of the nervous system can probably be described as plasticity. For years, long-lasting plasticity of synaptic transmission was the favorite mechanism to account for information storage in the brain. Calcium signals participate in an extremely complicated intracellular machinery that is capable of controlling structural and functional properties of the neurons [1-3]. Recent evidence indicates that the neuronal message is also persistently filtered through regulation of the functioning of voltage- gated ion channels. Changes in the expression level or biophysical properties of ion channels may alter a large range of functional processes such as dendritic integration, spike generation, signal propagation via the dendritic and axon, and regulation of the plasticity thresholds [4-7]. Potassium channels (K+ channels) have at present been identified in virtually all types of cells in all or- ganisms where they are involved in a great variety of physiological functions. These channels are ubiquitous and critical for life. They are found in Archaebacte- ria, Eubacteria, and eukaryotic cells, both plant and animal; their amino acid sequences can be very eas- ily recognized because K+ channels always contain a highly conservative segment called the K+ channel sig- nature sequence. This sequence forms a structural el- ement known as the selectivity filter; it prevents pas- sage of Na+ ions but allows K+ ions to move through the membrane at rates approaching that of the diffu- sion limit. The K+ selectivity filter catalyses dehydra- tion, transfer, and rehydration of a K+ ion within about ten nanoseconds. This physical process is absolutely crucial for the production of electrical signals in bi- ology. Within a certain time interval, the selectivity filter contains two K+ ions about 0.75 nm apart. This configuration promotes the ion conduction by exploit- The article is dedicated to the 90th anniversary of the outstanding Ukrainian physiologist academician Platon Kostyuk, who devoted himself to ion channel research. Матеріали VI Конгресу Українського товариства нейронаук, присвяченого 90-й річниці з дня народження академіка П. Г. Костюка (Київ, 4 – 8 червня 2014 р. NEUROPHYSIOLOGY / НЕЙРОФИЗИОЛОГИЯ.—2015.—T. 47, № 182 I. S. MAGURA, N. A. BOGDANOVA, and E. V. DOLGAYA ing electrostatic repulsive forces to overcome attrac- tive forces between K+ ions and the selectivity filter. The architecture of the channel pore determines the physical principles underlying selective K+ conduction [1-4]. This is the hallmark of K+ channels, namely the nearly perfect selectivity for K+ ions over Na+ ions in the setting of very high K conduction rates. In some members of the family of voltage-gated K+ channels, the removal of internal and external K+ allows Na+ ions to permeate through the pore [8-12]. POTASSIUM CHANNELS AND INTEGRATION OF THE SIGNALS IN NEURONS Effective control over the phenotype of individual neurons is based on the regulation of transcription and translation of the relevant genes, and such control is provided perfectly. Many types of channels and receptors are expressed in units of the nervous system, contributing to the complex and diverse functional repertoires of functioning of the neurons [12]. Complex processing and integration of the signals observed in neurons are facilitated by a variety of gating properties of different ion channels, particularly of those of voltage-gated K+ channels [6]. Potassium (K+) channels form the most diverse class of the ion channels. These channels are crucially im- portant for the regulation of neuronal excitability and for the formation of signaling activity in a variety of ways. These channel structures are major determi- nants of the membrane excitability; they influence the resting potential on the membranes and modulate the waveforms and frequencies of action potentials (APs) and thresholds of excitation. Voltage-gated K+ chan- nels are key components of multiple signal transduc- tion pathways. The functional diversity of K+ channels is much more extensive than the molecular diversity of the respective class of the genes. A distinctive com- bination of K+ channels endows neurons with a broad repertoire of the excitation properties and allows each neuron to respond in a specific manner to a given input within a given time interval. The properties of many channels can be modulated by second messenger path- ways activated by neurotransmitters and other types of stimuli. Potassium channels are among the most fre- quent targets for the actions of several signaling sys- tems [11-14]. The diversity of different members of the K+ chan- nel family is related mainly to various ways in which K+ channels come from the closed state to the open one. Some K+ channels are ligand-gated, which means that pore opening is energetically coupled with an ion, a small organic molecule, or even a protein mole- cule. Other K+ channels are voltage-gated; in this case, opening is energetically coupled to the movement of a charged voltage sensor within the membrane electric field. Therefore, different kinds of K+ channels open in response to different stimuli, namely to changes in the intracellular Ca2+ concentration, to levels of cer- tain G-protein subunits in the cell, or to a value of the membrane voltage. The specificity of information is generally encoded by the kinetics of the frequency, duration, bursting, and summation of APs. A neuron (or a specific axon, or a dendrite), when it is necessary to change its fir- ing pattern, can rapidly regulate the gating behavior of the existing channels. If longer-term modifications of the firing patterns are required, the cell may alter the transcriptional expression of the ion channel genes for providing diverse functions. The number of K+ channel genes is relatively large; the diversity of endogenous K+ current phenotypes observed in various excitable cells is, however, much greater. Additional process- es such as alternative splicing, posttranslational modi- fication, and heterologus assembling of pore-forming subunits in tetramers contribute to extend the function- al diversity of a limited repertoire of the K+ channel gene products. Even greater diversity can be achieved through interactions between K+ channel proteins and accessory proteins or subunits [15-19]. General mechanisms of ion channel targeting are of considerable interest. Historically, targeting and cel- lular localization of K+ channels were believed to be primarily related to protein-protein interactions. How- ever, there is increasing interest in the potential role of cellular lipids in the regulation of K+ channel localiza- tion, which was determined by a revised view on the membrane organization. The traditional fluid mosaic model has been modified to reflect the developing ap- preciation on the membrane lipid heterogeneity. The existence of membrane microdomains, particularly those referred to as lipid rafts, has motivated investi- gators to examine the role of protein–lipid interactions in the ion channel localization more closely. Lipid rafts are specialized membrane microdomains rich in sphingolipids and cholesterol. These rafts have been implicated in the organization of many membrane-as- sociated signal pathways. Biochemical and functional studies indicated that Kv channels are in close spatial relations with lipid raft microdomains on the cell sur- NEUROPHYSIOLOGY / НЕЙРОФИЗИОЛОГИЯ.—2015.—T. 47, № 1 83 POTASSIUM CHANNELS AND SIGNAL TRANSDUCTION PATHWAYS IN NEURONS face [15]. Precise control of the neuronal AP patterns underlies the basic functioning of the central and peripheral nervous systems. This control relies, to a significant extent, on the adaptability of voltage-gated potassium, sodium, and calcium channels. The importance of voltage-gated ion channels in mediating and sculpting electrical signals in the brain is well established. Theoretical and experimental reports described how neurons can respond to changing inputs by adjusting their firing properties, and these events are mediated by modification of voltage-gated ion channels [5]. Recently obtained evidence indicates that neuronal output messages are persistently filtered through regulation of voltage-gated ion channels [14]. There are many genes encoding the pore-forming subunits of the “classical” voltage-gated ion channels in mammalian neurons. Complex processing and integration of the signals observed in neurons are facilitated by a diverse range of the gating properties of ion channels typical of this cell type, particularly of those of the voltage-gated K+ channels. Distinctive combinations of ion channels endow neurons with a broad repertoire of excitation properties and allow each neuron to respond in a spe- cific manner to a given input at a given moment. The properties of many K+ channels can be modulated by second messenger pathways activated by neurotrans- mitters and other stimuli. It is now widely recognized that voltage-gated K+ channels exist not as independent units merely re- sponding to changes in the transmembrane potential but as macromolecular complexes able to integrate an enormous multiplicity of cellular signals providing fine tuning of channel activities. Proteins associated with K+ channels may do so dynamically with regu- lated on- and off- rates, or they may be constitutive components of the complexes determining the life- time of the channel protein. The functional results of interactions with these accessory proteins include al- teration of the channel assembling, trafficking, pro- tein stability, gating kinetics, conduction properties, and responses to signal transduction events [17]. Al- though a single type of the K+ channel α subunit is of- ten present in a variety of different organs, the kinet- ic behavior and conformational changes of α subunits can be modulated by co-assembling with an ancillary subunit. The expression of ancillary subunits varies between organs, as well as between regions of one and the same organ [19]. This diversity of the ancillary subunit expression, therefore, contributes to the diverse assortment of potassium currents recorded from native tissues. In addition, relative expression of K+ channels and their associated ancillary subunits can be affected by a number of factors. The latter change in the course of development, with modifications of the hormonal state, under ischemic conditions, etc., these factors also modulate the electrophysiology and pharmacology of native potassium currents [17]. Potassium channels encompass numerous auxiliary subunits, and many channels can be assembled with heteromers of multiple subunits and splice variants, rendering the combinatorial diversity of voltage-gated ion channels truly staggering [6]. Potassium currents contribute in a diverse mode to the specificity of neuronal firing patterns. The compo- sition of these currents may be determined by regulat- ed transcription, alternative RNA splicing, and post- translational modifications. Alternative splicing is obvious in nearly all metazoan organisms as a means for producing functionally diverse polypeptides from a single gene [16]. As is generally accepted, a neuron can be divided into three interrelated modules, namely the input, in- tegration core, and output. Historically, voltage-gat- ed ion channels were postulated to play a crucial role at the output part of the neuron. A passive integrator feeds an algebraic sum of inputs of the neuron to a nonlinear integrating device (cell body), which fires APs depending on the inputs it receives. The role of various voltage-gated ion channels in modulating sin- gle APs and their bursts have been teased apart, and significant information is available on the activa- tion, deactivation, and inactivation dynamics of var- ious ion channels within millisecond-order time in- tervals. Later on, equipped with the knowledge that there are conductances active in the subthreshold states and that neuronal dendrites possess the respec- tive ion channels, the role of voltage-gated channels in the integration module began to attract special atten- tion. Experimental and theoretical evidence is being accumulated on how ion channels could contribute to integration of synaptic inputs localized on and outside of the dendrites or to back-propagating APs [18, 20]. Potassium channels located in the dendrites of hippo- campal CA1 pyramidal neurons control the shape and amplitude of back-propagating APs, the amplitude of excitatory input effects, and the dendrite excitabil- ity. Non-uniform gradients in the distribution of K+ channels on the dendrites make the dendritic electri- cal properties markedly different from those found in the soma [21]. NEUROPHYSIOLOGY / НЕЙРОФИЗИОЛОГИЯ.—2015.—T. 47, № 184 I. S. MAGURA, N. A. BOGDANOVA, and E. V. DOLGAYA Ion channels are not only crucial in neurons of healthy individuals; several types of these channels have been implicated in the pathogenesis of certain diseases, both genetic and acute. The successfulness of searching for possible treatments of channel-asso- ciated diseases will be higher if we understand in de- tail how channels, including K+ ones are implicated in physiology of the cell and if we will be able to de- sign modifications that restore normal functions of the channels [10]. For example, several human genetic diseases involving cardiac arrhythmias, deafness, epi- lepsy, diabetes, and misregulation of the blood pres- sure, are caused by disruptions of the K+ channel genes [9]. The K+ channel activity is modulated by external and internal K+ ions. Elevation of the [K+]O may occur just through high levels of neuronal activity and through specific actions of neurotransmitters on glial cells. Some of the effects of changes in the [K+]O can be attributed to shifts in the K+ equilibrium potential, which modify both the resting potential in the cells and the driving force for K+ currents. Variations in the [K+]O are implicated in the pathogenesis of a few disorders, including epileptiform seizures and electrical instability of the heart following acute ischemia. These changes might occur through [K+]O- determined modulation of K+ channels and changes in the firing pattern of the neuron due to shifts in the [K+] O [9]. Two distinct molecular mechanisms for K+ chan- nel inactivation have been described. These are an N-type mechanism related to rapid occlusion of the open channel by an intracellular tethered blocker, and a slow C-type mechanism involving a slower change at the extracellular mouth of the pore. These two mecha- nisms should be coupled in some a way [22]. Recent experiments showed that slow C-type inactivation can be further divided into P-type and C-type. Slow in- activation of K+ channels can be strongly influenced by permeating ions. Cumulative inactivation of volt- age-regulated K+ channels is thought to be due to the P/C-type inactivation state, the recovery from which is slow [23-25]. Cumulative inactivation of K+ chan- nels appears to be state-dependent and voltage-inde- pendent. Cumulative inactivation, similar in its mech- anisms to that of K+ channels, is manifested in Ca2+ channels [26]. One of the main causes of the frequen- cy-dependent spike broadening during repetitive dis- charges is cumulative inactivation of certain K+ chan- nels. Such AP broadening can modify a few aspects of neuronal signaling [27-29]. Tetraethylammonium (TEA) ions have been for many years used as effective probes in the research of the structure and functions of K+ channels. This is, perhaps, due to the fact that TEA ions are positively charged (similarly to K+ ions) and have about the same size as hydrated K+ ions. External TEA blocks many types of K+ channels, but within an about 1000-fold range of effective concentrations [30-31]. This differ- ence can mostly be attributed to certain amino acid residue at a single position in the outer entrance to the pore [32]. Results of recent molecular dynamic simu- lations and electrostatic calculations allowed research- ers to suggest that the external TEA binding site in K+ channels is localized outside with respect to the mem- brane electric field. The TEA-binding site is formed by a bracelet-like complex of pore-lining aromatic resi- dues. The center of the bracelet can bind a TEA ion via a cation-π orbital interaction [30-31, 33]. The K+-dependent conformational alteration that re- sulted in a change in the [TEA]O potency correlates with the effect of K+ on the inactivation rate. As the [K+]O increased, the [TEA]O potency and inactivation rate also increased. The effects of [K+]O on еру inacti- vation rate became saturated at the same value of [K+]O as the effect on the [TEA]O potency did. These results suggest that different channel conformations associat- ed with different [TEA]O potencies can affect the rate of slow inactivation. The selectivity filter is an inte- gral part of the inactivation mechanisms. The selectiv- ity filter is the site through which K+ ions influence the channel conformation [31, 34, 35]. Potassium channels mediate outward K+ currents and increase the membrane conductance; they tend to hyperpolarize the cell membrane and attenuate the ef- fects of excitatory stimuli. Potassium channels are, therefore, normally regarded as inhibitory, i.e., they reduce the neuronal excitability. Genetically provoked suppression of K+ channel activity in mice causes the development of epileptiform activities. Pharmaco- logical blocking of K+ channels, e.g., with 4-amino- pyridine or barium, readily evokes epileptic seizures. Compounds having K+ channel blocking properties are commonly employed as therapeutic agents for a number of conditions such as arrhythmias, cancer, and neurological disorders, including psychoses, epilepsy, stroke, and Alzheimer’s disease. There is a wide va- riety of therapeutic agents targeted to non-K+ chan- nels but providing an unintended block of K+ chan- nels. This type of K+ channel blocking can result in potentially serious and sometimes even fatal side ef- fects (e.g., in the case of cardiac arrhythmias) [17]. NEUROPHYSIOLOGY / НЕЙРОФИЗИОЛОГИЯ.—2015.—T. 47, № 1 85 POTASSIUM CHANNELS AND SIGNAL TRANSDUCTION PATHWAYS IN NEURONS CONCLUDING REMARKS Regulation of transcription and translation of the relevant genes exerts significant control effects on the phenotype of individual neurons. Many types of channels and receptors contributing to diverse functional repertoires of the neurons are expressed in the nervous system. Complex processing and integration of the signals observed in neurons are facilitated by an extensive range of the gating properties of ion channels in this cell type, particularly of voltage-gated potassium channels. Potassium channels form the most diverse class of ion channels; these channels are crucially important for the regulation of neuronal excitability and signaling activity in a variety of modes. They are major determinants of the membrane excitability, influencing the resting potential on the membranes, waveforms and frequencies of action potentials (APs), and thresholds of excitation. Potassium channels fulfill important functions in many signal transduction pathways in the nervous system. Voltage-gated K+ channels are key components of a number of signal transduction pathways in the cell. The functional diversity of these channels exceeds many times the considerable molecular diversity of the respective genes. Distinctive combinations of the properties of K+ channels endows neurons with a broad repertoire of their excitation properties and allow each neuron to respond in a specific manner to a given input at a given time. The properties of many channels can be modulated by secondary messenger pathways activated by neurotransmitters and certain other stimuli. Potassium channels are among the most frequent targets for the actions of several signaling systems. Potassium channel activity is significantly modulated by external and internal K+ ions. Significant elevation of the [ K+ ]O may occur just through high levels of neuronal activity and through specific actions of neurotransmitters on glial cells [1]. The information contained in spike timing is available immediately rather than after an averaging integration period. Furthermore, timing of the AP patterns can potentially transmit even more information than timing of individual constituent spikes. If longer- term modifications of the firing patterns are required, the cell may alter the transcriptional expression of ion channel genes. The selectivity of ion channel pores has generally been regarded as the fixed one. However, recent studies on various classes of ion channels challenged the generality of this idea and showed that some ion channels can significantly modify their ion selectivity, and normally impermeant ions begin to permeate under some certain circumstances. This phenomenon represents both a new functional aspect of physiology of ion channels and allows one to propose a suggestion on novel ways by which channels may process information in the nervous system [35]. Ion channels are not only crucial molecular membrane objects in healthy individuals; some of them have been implicated in the pathogenesis of different diseases, either genetic or acute [19]. This publication was not associated with any experiments on animals or tests involving human subjects; therefore, it does not require confirmation of compliance with existing ethical standards from this aspect. The authors of this communication, I. S. Magura, N. A. Bogdanova, and E. V. Dolgaya, confirm that this publication was not associated with any conflicts regarding commercial or financial relations, relations with organizations and/or individuals who may have been related to the study, and interrelations of co-authors of the article. І. С. Магура1, Н. А. Богданова1, О. В. Довга1 КАЛІЄВІ КАНАЛИ ТА ШЛЯХИ ПЕРЕДАЧІ КЛІТИННИХ СИГНАЛІВ В НЕЙРОНАХ 1 Інститут фізіології ім. О. О. Богомольця НАН України, Київ (Україна). Р е з ю м е Калієві канали виконують важливі функції у великій кіль- кості шляхів передачі клітинних сигналів у нервовій систе- мі. Складна обробка та інтеграція сигналів, котрі спостері- гаються в нейронах, полегшуються через наявність великого набору воротних властивостей іонних каналів, зокрема та- ких властивостей потенціалкерованих калієвих каналів. Спе- цифічні сполучення калієвих каналів забезпечують не- йронам широкий репертуар характеристик збудливості та дозволяють кожному нейрону відповідати специфічним чином на дію конкретного вхідного сигналу в конкретний момент часу. Властивості багатьох калієвих каналів мо- жуть модулюватися під дією шляхів вторинних месендже- рів, активованих нейротрансмітерами та стимулами інших видів. Калієві канали формують найбільш різноманітний клас іонних каналів. Ці канали істотно важливі для регуля- ції збудливості нейронів та сигнальної активності, що здій- снюється різним чином. Дані канальні структури є основ- ними детермінантами збудливості мембрани, впливаючи на потенціал спокою мембран, форму та частоту потенціалів дії та пороги збудження. Потенціалкеровані калієві канали NEUROPHYSIOLOGY / НЕЙРОФИЗИОЛОГИЯ.—2015.—T. 47, № 186 I. S. MAGURA, N. A. BOGDANOVA, and E. V. DOLGAYA не існують як незалежні одиниці, в основному відповідаль- ні за зміну мембранного потенціалу; це макромолекулярні комплекси, здатні інтегрувати колосальну кількість клітин- них сигналів, котрі реалізують тонку настройку активнос- ті каналів. Сполуки, котрі змінюють властивості калієвих каналів, широко використовуються як терапевтичні агенти в таких випадках, як аритмії, ракові захворювання та нев- рологічні розлади (психози, епілепсія, інсульти та хворо- ба Альцгеймера). Цілями значної кількості терапевтичних агентів є канали, що не відносяться до калієвих, але «нена- вмисно» блокують саме калієві канали. Таке блокування ка- лієвих каналів може зумовлювати потенційно дуже серйозні або навіть смертельні побічні ефекти. REFERENCES 1. P. G. Kostyuk, Plasticity in Nerve Cell Function, Clarendon Press, Oxford Univ. Press, Oxford (1998). 2. P. G. Kostyuk, Calcium Ions in Nerve Cell Function, Oxford Univ. Press, Oxford (1992). 3. P. G. Kostyuk and E. A. Lukyanetz, “Mechanisms of antagonistic action of internal Ca2+ on serotonin-induced potentiation of Ca2+ current in Helix neurones,” Pflügers Arch., 424, 73-83 (1993). 4. D. Debanne, ”Plasticity of neuronal excitability in vivo,” J. Physiol., 587, No. 13, 3057-3058 (2009). 5. N. C. Spitzer, “New dimensions of neuronal plasticity,” Nat. Neurosci., 2, No. 6, 489-491 (1999). 6. R. Narayanan and D. Johnston, “The ascent of channels with memory,” Neuron, 60, No. 3, 735-738. 7. F. Bezanilla, “Ion channels: from conductance to structure,” Neuron, 60, No. 3, 456-468 (2008). 8. D. A. Doyle, J. M. Carabal, R. A. Pfuetzner, et al., “The structure of the potassium channel: molecular basis of K+ conduction and selectivity,” Science, 280, 69-77 (1998). 9. S. Choe, “Potassium channel structures,” Nat. Rev. Neurosci., 3, No. 2, 115-121 (2002). 10. R. MacKinnon, “Potassium channels,” FEBS Lett., 555, No. 3, 62-65 (2003). 11. W. A. Coetzee, Y. Amarillo, J. Chiu, et al., “Molecular diversity of K+ channels,” Ann. New York Acad. Sci., 868, No. 5, 233- 285 (1999). 12. D. N. Papazian, “Potassium channels: some assembly required,” Neuron, 23, 7-10 (1999). 13. I. S. Magura and I. Z. Zamekhovsky, “Repetitive firing in molluscan giant neurons,” J. Exp. Biol., 59, No. 3, 767-780 (1973). 14. J. N. MacLean, Y. Zhang, B. R. Johnson, and R. M. Harris- Warrick, “Activity-independent homeostasis in rhythmically active neurons,” Neuron, 37, No. 6, 109-120 (2003). 15. J. R. Martens, K. O’Connell, and M. Tamkun, “Targeting of ion channels to membrane microdomains: localization of Kv channels to lipid rafts,” Trends Pharmacol. Sci., 25, 16-21 (2004). 16. D. L. Black, “Protein diversity from alternative splicing: a challenge for bioinformatics and post-genome biology,” Cell, 103, 367-370 (2000). 17. Y. Li, S. Y. Um, and T. V. McDonald, “Voltage-gated potassium channels: regulation by accessory subunits,” Neuroscientist, 12, No. 1, 199-209 (2006). 18. L. L. Isom, K. S. De Jongh, and W. A. Catterall, “Auxilary subunits of voltage-gated ion channels,” Neuron, 12, No. 3, 1183-1194 (1994). 19. G. C. L. Bett and R. L. Rasmusson, “Modification of K channel–drug interactions by ancillary subunits,” J. Physiol., 586, No. 4, 929-950 (2008). 20. D. Johnston, D. A. Hoffman, and J. C. Magee, “Dendritic potassium channels in hippocampal pyramidal neurons,” J. Physiol., 525, No. 1, 75-81 (2000). 21. P. J. Spruston, “Pyramidal neurons: dendritic structure and synaptic integration,” Nat. Rev. Neurosci., 9, 206-221 (2008). 22. T. Baukrowits and G. Yellen, “Modulation of K current by frequency and external [K]: A tale of two inactivation mechanisms,” Neuron, 15, 951-960 (1995). 23. K. G. Klemic, C. C. Shieh., G. E. Kirsch, and S. W. Jones, “Inactivation of Kv2.1 potassium channels,” Biophys. J., 74, 1779-1789 (1998). 24. K.G. Klemic, G. E. Kirsch, and S. W. Jones, “U-type inactivation of Kv3.1 and Shaker potassium chаnnels,” Biophys. J., 81, 814-826 (2000) 25. I. S. Magura, V. V. Kucher, and N. Y.Boiko, “Voltage-operated potassium channels and mechanisms controlling their activity,” Neurophysiology, 36, 285-292 (2004). 26. P. G. Patil, D. L. Brody, and D. T. Yue, “Preferential closed- state inactivation of neuronal calcium channels,” Neuron, 20, No. 4, 1027–1038 (1998). 27. I. S. Magura, O. A. Krishtal, and A. G. Valeyev, “Behaviour of delayed current under long duration voltage clamp in snail neurons,” Compar. Biochem. Physiol., Ser. A, 40, 715-722 (1971). 28. R. W. Aldrich, “Inactivation of voltage-gated delayed potassium current in molluscan neurons: a kinetic model,” Biophys. J., 36, No. 2, 519-532 (1981). 29. M. Ma and J. Koester, “The role of K currents in frequency- dependent spike broadening in Aplysia R20 neurons: A dynamic-clamp analysis,” J. Neurosci . , 16 , 4089-4102 (1996). 30. L. Heginbotham and R. MacKinnon, “The aromatic binding site for tetraethylammonium ion on potassium channels“, Neuron., 8, No. 3, 483-491 (1992). 31. J. Thompson and T. Begenisich, “External TEA block of Shaker K+ channels is coupled to the movement of K ions within the selectivity filter,” J. Gen. Physiol., 122: 239- 246 (2003). 32. R. MacKinnon and G. Yellen, “Mutation affecting TEA blockade and ion permeation in voltage-activated K channels,” Science, 250, 276-279 (1990). 33. S. Crouzy, S. Berneghe, and B. Roux, “Extracelluar blockade of K channels by TEA: results from molecular dynamics simulations of the KcsA channel,” J. Gen. Physiol., 18, No. 1, 207-217 (2001). 34. D. Immke and S. J. Korn, “Ion-ion interaction at the selectivity filter. Evidence from K+-dependent modulation of tetraethylammonium efficacy in Kv2.1 potassium channels,” J. Gen. Physiol., 115, No. 3, 509-518 (2000). 35. B. S. Khakh and H. A. Lester, “Dynamic selectivity filters in ion channels”, Neuron, 23, No. 4, 653–658 (1999).