Involvement of Central β-Adrenergic Circuitry in Food and Water Intake in Chickens
We examined the effects of intracerebroventricular (i.c.v.) microinjections of α, β-adrenergic agonist, isoproterenol (ISOP), and of a β₁,₂-adrenoceptor blocker, propranolol (PROP), on food and water intake in broiler cockerels deprived of food and water for 3 h. We found that ISOP, at a 200 n...
Збережено в:
Дата: | 2015 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут фізіології ім. О.О. Богомольця НАН України
2015
|
Назва видання: | Нейрофизиология |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/148178 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Involvement of Central β-Adrenergic Circuitry in Food and Water Intake in Chickens / A. Baghbanzadeh, Z. Hamidiya, M.H. Geranmayeh // Нейрофизиология. — 2015. — Т. 47, № 2. — С. 151-156. — Бібліогр.: 31 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-148178 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1481782019-02-18T01:23:16Z Involvement of Central β-Adrenergic Circuitry in Food and Water Intake in Chickens Baghbanzadeh, A. Hamidiya, Z. Geranmayeh, M.H. We examined the effects of intracerebroventricular (i.c.v.) microinjections of α, β-adrenergic agonist, isoproterenol (ISOP), and of a β₁,₂-adrenoceptor blocker, propranolol (PROP), on food and water intake in broiler cockerels deprived of food and water for 3 h. We found that ISOP, at a 200 nM concentration and not smaller, significantly (P ≤ 0.05) increased food intake but not water intake. PROP microinjected in different doses (20-80 mM) significantly (P ≤ 0.05) decreased food intake. These observation suggest a direct orexigenic role for the β₁ - and β-adrenergic systems in the regulation of food intake in chickens. The significant (P ≤ 0.05) effect of i.c.v. injections of PROP (transient increase in water intake) implies a role of the adrenergic system, possibly via α-adrenoceptors, in the regulation of water intake in broilers, which is food intake-independent. Було досліджено впливи інтрацеребровентрикулярних мікроін’єкцій агоніста β-адренорецепторів ізопротеренолу та блокатора β-адренорецепторів пропранололу на споживання їжі та води бройлерами-півниками, позбавленими їжі та питва протягом 3 год. Виявилося, що ізопротеренол у концентрації 200 нM (але не менше) істотно (P ≤ 0.05) посилював споживання їжі, але не води. Пропранолол, ін’єкований у різних дозах (20–80 мкM), вірогідно зменшував споживання їжі. Отримані дані свідчать на користь гіпотез про орексигенну роль β₁ - та β₂-адренергічних систем у регуляції споживання їжі курчатами. Істотний (P ≤ 0.05) ефект ін’єкцій пропранололу (тимчасове зростання споживання води) вказує на певну роль адренергічної системи щодо регуляції споживання води бройлерами; цей ефект, вірогідно, реалізується через α-адренорецептори та є незалежним від впливів на споживання їжі. 2015 Article Involvement of Central β-Adrenergic Circuitry in Food and Water Intake in Chickens / A. Baghbanzadeh, Z. Hamidiya, M.H. Geranmayeh // Нейрофизиология. — 2015. — Т. 47, № 2. — С. 151-156. — Бібліогр.: 31 назв. — англ. 0028-2561 http://dspace.nbuv.gov.ua/handle/123456789/148178 612.3:591.147 en Нейрофизиология Інститут фізіології ім. О.О. Богомольця НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We examined the effects of intracerebroventricular (i.c.v.) microinjections of α, β-adrenergic
agonist, isoproterenol (ISOP), and of a β₁,₂-adrenoceptor blocker, propranolol (PROP), on
food and water intake in broiler cockerels deprived of food and water for 3 h. We found that
ISOP, at a 200 nM concentration and not smaller, significantly (P ≤ 0.05) increased food
intake but not water intake. PROP microinjected in different doses (20-80 mM) significantly
(P ≤ 0.05) decreased food intake. These observation suggest a direct orexigenic role for the
β₁ - and β-adrenergic systems in the regulation of food intake in chickens. The significant
(P ≤ 0.05) effect of i.c.v. injections of PROP (transient increase in water intake) implies a role
of the adrenergic system, possibly via α-adrenoceptors, in the regulation of water intake in
broilers, which is food intake-independent. |
format |
Article |
author |
Baghbanzadeh, A. Hamidiya, Z. Geranmayeh, M.H. |
spellingShingle |
Baghbanzadeh, A. Hamidiya, Z. Geranmayeh, M.H. Involvement of Central β-Adrenergic Circuitry in Food and Water Intake in Chickens Нейрофизиология |
author_facet |
Baghbanzadeh, A. Hamidiya, Z. Geranmayeh, M.H. |
author_sort |
Baghbanzadeh, A. |
title |
Involvement of Central β-Adrenergic Circuitry in Food and Water Intake in Chickens |
title_short |
Involvement of Central β-Adrenergic Circuitry in Food and Water Intake in Chickens |
title_full |
Involvement of Central β-Adrenergic Circuitry in Food and Water Intake in Chickens |
title_fullStr |
Involvement of Central β-Adrenergic Circuitry in Food and Water Intake in Chickens |
title_full_unstemmed |
Involvement of Central β-Adrenergic Circuitry in Food and Water Intake in Chickens |
title_sort |
involvement of central β-adrenergic circuitry in food and water intake in chickens |
publisher |
Інститут фізіології ім. О.О. Богомольця НАН України |
publishDate |
2015 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/148178 |
citation_txt |
Involvement of Central β-Adrenergic Circuitry in Food and Water Intake in Chickens / A. Baghbanzadeh, Z. Hamidiya, M.H. Geranmayeh // Нейрофизиология. — 2015. — Т. 47, № 2. — С. 151-156. — Бібліогр.: 31 назв. — англ. |
series |
Нейрофизиология |
work_keys_str_mv |
AT baghbanzadeha involvementofcentralbadrenergiccircuitryinfoodandwaterintakeinchickens AT hamidiyaz involvementofcentralbadrenergiccircuitryinfoodandwaterintakeinchickens AT geranmayehmh involvementofcentralbadrenergiccircuitryinfoodandwaterintakeinchickens |
first_indexed |
2025-07-12T18:31:50Z |
last_indexed |
2025-07-12T18:31:50Z |
_version_ |
1837467034404782080 |
fulltext |
NEUROPHYSIOLOGY / НЕЙРОФИЗИОЛОГИЯ.—2015.—T. 47, № 2 151
UDC 612.3:591.147
A. BAGHBANZADEH,1 Z. HAMIDIYA,1 and M. H. GERANMAYEH1
INVOLVEMENT OF CENTRAL β-ADRENERGIC CIRCUITRY IN FOOD
AND WATER INTAKE IN CHICKENS
Received December 13, 2013
We examined the effects of intracerebroventricular (i.c.v.) microinjections of α, β1,2-adrenergic
agonist, isoproterenol (ISOP), and of a β1,2-adrenoceptor blocker, propranolol (PROP), on
food and water intake in broiler cockerels deprived of food and water for 3 h. We found that
ISOP, at a 200 nM concentration and not smaller, significantly (P ≤ 0.05) increased food
intake but not water intake. PROP microinjected in different doses (20-80 mM) significantly
(P ≤ 0.05) decreased food intake. These observation suggest a direct orexigenic role for the
β
1
- and β
2
-adrenergic systems in the regulation of food intake in chickens. The significant
(P ≤ 0.05) effect of i.c.v. injections of PROP (transient increase in water intake) implies a role
of the adrenergic system, possibly via α-adrenoceptors, in the regulation of water intake in
broilers, which is food intake-independent.
Keywords: food and water intake, broiler chickens, intracerebroventricular injections,
isoproterenol, propranolol.
1Department of Basic Sciences, Faculty of Veterinary Medicine, University
of Tehran, Iran.
Correspondence should be addressed to A. Baghbanzadeh
(e-mail: ali.baghbanzadeh@yahoo.com).
INTRODUCTION
As was shown, hypothalamic or intracerebroventri-
cular (i.c.v.) microinjections of norepinephrine (NE)
stimulates feeding in both satiated and hungry rats [1-
3]. At the same time, such injections inhibited drink-
ing in thirsty rats [3] but stimulated water intake in
satiated rats [4]. It was proposed that NE-induced in-
crease in food intake is associated with stimulation of
β
2
-adrenoceptors [2, 3, 5, 6]. At the same, it was re-
ported that hypothalamic injections of agonists of β1-
and β
2
-adrenoreceptors reduced feeding in rats [7].
Intracerebroventricular, i.c.v., injections of NE did
not stimulate feeding behavior of both broiler- and
layer-type chickens [8, 9], while such administration
of epinephrine stimulated food intake [8, 9]. Most
research on food intake in avian species has been
focused on α-adrenoceptors, while information on
β-adrenoceptors is scarce. It has been shown that β
1
-
adrenergic agonists stimulated food intake in chickens
[10], and β
2
-receptor agonists stimulated that in
broilers [11] and layers [12]. A β
3
-agonist reduced
food intake of chicks under ad libitum, but not fasting,
feeding conditions [13]. In rats, hypophagia was in-
duced by administration of β
3
-agonists [14-16], but a
β
3
-antagonist exerted no effect on food intake [14].
Injections of an adrenergic β1- and β2-adrenoreceptor
agonist into the lateral hypothalamic area decreased
food and, especially, water intake in broilers deprived
of food and water for 3 h [17].
In our study, we examined the effect of i.c.v.
injections of isoproterenol (ISOP), a β
1
- and,
especially, β
2
-adrenoceptor agonist, and of propranolol
(PROP), a nonselective β-blocker, on food and water
intake in broilers.
METHODS
Forty-eight (for each experiment) 1-day-old Ross 308
broiler cockerels (Eshragh Hatcheries, Varamin, Iran)
were housed until 2-week age in a battery-heated room
with continuous lighting; then they were transferred
to individual fully computerized cages (TSE
Systems, Germany), by which the amount of food
and water intake within each 10-min-long interval
was automatically recorded. Chickens were provided
with free access to water and to a broiler starter mash
ratio (Chineh Feed Mill, Iran) containing 21% protein
and 3200 kcal/kg metabolizable energy in individual
feeders. The room temperature was maintained at
22 ± 2°C.
Surgery. When chickens weighed approximately
750 ± 50 g, they were anesthetized and underwent
NEUROPHYSIOLOGY / НЕЙРОФИЗИОЛОГИЯ.—2015.—T. 47, № 2152
A. BAGHBANZADEH, Z. HAMIDIYA, and M. H. GERANMAYEH
surgery according to the procedure mentioned before
[18] considering coordinates of the cerebral ventricles
[19].
Chemicals. ISOP (a β
1
- and β
2
-adrenoceptor
agonist) and PROP (nonselective β-blocker) were
purchased from Sigma-Aldrich Chemie, Germany. All
solutions were prepared in a pyrogen-free 0.9% NaCl
solution (saline); the latter also served as the control
in microinjections.
I.c.v. Injections. Five experiments were conducted
to determine the effects of i.c.v. microinjections
of ISOP and PROP on food and water intake; forty-
eight chickens were used in each experiment. In a
separate experiment, all solutions were injected on
the same day in replicates of 12 birds, and feeding
behavior was monitored. Injections were made with a
29-gauge thin-walled stainless-steel injection cannula
that extended 0.5 mm beyond the guide cannula. The
injection cannula was connected to a 10-µl Hamilton
syringe via a 50-cm-long polyethylene tubing. Several
days before starting the experiments, the chickens
were restrained daily to acclimate to the procedure.
They were deprived of food and water for 3 h prior
to injection. Solutions were injected within a 30-sec-
long interval, and the injection cannula remained in
place for an additional 30 sec before removal. After
injection, all chickens were returned to their cages.
Tubing and syringes were kept in 70% ethanol, and the
glassware was autoclaved to render materials pyrogen-
free. Proper location of the guide cannula was verified
according to i.c.v. injections of methylene blue at the
end of the experiments after slicing of the frozen brain
tissue.
Just after the injections, fresh food (in experiments
1, 3, and 5) and fresh water (in experiments 2 and 4)
were provided for the birds.
Experiments 1 and 2: Effects of I.c.v. Injections
of ISOP on Food and Water Intake. Broilers in
experiments 1 and 2 were injected with pure saline
(control), or 50, 100, and 200 nM ISOP in 2.5 µl of
saline into the right lateral ventricle. Cumulative food
and water intake (g) was recorded at 15, 30, 60, 120,
and 180 min post injection (p.i).
Experiments 3 and 4: Effects of I.c.v. Injections
of PROP on Food and Water Intake. Experiments
3 and 4 were done to examine the effects of i.c.v.
injections of 20, 40, or 80 µM PROP in 2.5 µl saline
and carried out in the same mode as those described
above. The doses of ISOP and PROP were based on the
result of a previous study on rats [20].
Experiment 5: Effect of I.c.v. Injections of
ISOP on Food Intake in PROP-Pretreated Birds.
In experiment 5, cumulative food intake (g) of
broiler cockerels following i.c.v. injections of saline
and combinations of effective doses of the agonist
(400 nM) and antagonist (40, 80, or 160 µM), each in
a 1.25 µl volume, was recorded at 15, 30, 60, 120, and
180 min post-injection.
In control groups, saline was used in the same
volume and times of i.c.v. injections were similar to
those in the treated groups.
Statistical Analysis. Cumulative food and water
intake (g) was subjected to one-way analysis of
variance (ANOVA) at each time period. For treatments
showing the main effect by ANOVA, means were
compared by the post-hoc Bonferroni’s and Duncan’s
multiple range tests. P ≤ 0.05 was considered
confirmation of significant differences between
groups. All data are presented below as means ± s.d.
RESULTS
The effects of i.c.v. injections of ISOP on food intake
are summarized in Fig. 1. Injections of this agent at
a concentration of 200 nM significantly (P ≤ 0.05)
increased food intake during the experiment.
The effects of i.c.v. injections of ISOP on water
intake are summarized in Fig. 2. As can be seen, none
of the doses used evoked a significant change in water
0 C
*
*
*
* *
1 2 3
10
15 30 60 120 180 min
20
30
40
50
60
70
80
g
F i g. 1. Cumulative food intake (g) in broiler cockerels following
i.c.v. microinjections of three different doses of isoproterenol
(ISOP). C is the control (injections of saline); 1-3 are experimental
groups injected with 50, 100, and 200 nM ISOP solutions. Time,
min, after injections is shown below the diagrams. Means ± s.d. are
shown; asterisks indicate cases of significant (P < 0.05) differences
from the control.
Р и с. 1. Кумулятивні значення споживання їжі (г) півниками-
бройлерами після внутрішньошлуночкових мікроін’єкцій
ізопротеренолу в трьох різних дозах.
NEUROPHYSIOLOGY / НЕЙРОФИЗИОЛОГИЯ.—2015.—T. 47, № 2 153
INVOLVEMENT OF CENTRAL β-ADRENERGIC CIRCUITRY IN FOOD AND WATER INTAKE
intake.
The effects of i.c.v. injections of PROP on food
intake is summarized in Fig. 3. Such injections,
at all doses used, decreased food intake during the
experiment; the respective shift demonstrated a
significant (P ≤ 0.05) difference at 30 min post-
injection.
The effect of i.c.v. injection of PROP on water
intake is summarized in Fig. 4. PROP transiently
increased water intake at concentrations of 20 and
40 µM at the 30th and 15th min post-injection.
The effect of i.c.v. injection of ISOP on food intake
in PROP-pretreated birds is summarized in Fig. 5.
Pretreatment with PROP, a β-adrenergic antagonist,
practically abolished the effect of ISOP on food intake.
DISCUSSION
There is compelling evidence that adrenergic synaptic
transmission plays an important role in the control
of feeding [11, 21, 22] and drinking behavior. Any
alteration of the brain NE level can either increase or
decrease eating depending on the site of application
0
* *
* * *
* * *
*
* *
10
min
20
30
40
50
60
70
g
0
20
40
60
80
g
C 1 2 3
15 30 60 120 180 min min
min
F i g. 2. Cumulative water intake (g) in broiler cockerels following
i.c.v. microinjections of three different doses of ISOP. Designations
are the same as in Fig. 1.
Р и с. 2. Кумулятивні значення споживання води півниками-
бройлерами після внутрішньошлуночкових мікроін’єкцій
ізопротеренолу.
C 1 2 3
15 30 60 120 180
F i g. 3. Cumulative food intake (g) of broiler cockerels following
i.c.v. microinjections of three different doses of propranolol
(PROP). In groups 1-3, 20, 40, and 80 µM solutions were injected;
other designations are the same as in Figs. 1 and 2.
Р и с. 3. Кумулятивні значення споживання їжі півниками-
бройлерами після внутрішньошлуночкових мікроін’єкцій
пропранололу в трьох різних дозах.
0
10
20
30
40
50
60
70
80
g
g
15 30 60 120 180
* *
*
F i g. 4. Cumulative water intake (g) in broiler cockerels following
i.c.v. microinjections of three different doses of PROP. Designations
are the same as in Fig. 3.
Р и с. 4. Кумулятивні значення споживання води півниками-
бройлерами після внутрішньошлуночкових мікроін’єкцій
пропранололу.
0
10
20
30
40
50
60
C 1 2 3
15 30 60 120 180
C 1 2 3
F i g. 5. Cumulative food intake (g) in broiler cockerels following
i.c.v. microinjections of 400 nM ISOP pretreated with i.c.v.
injections of three different doses of PROP (40, 80, and 160 µM).
Р и с. 5. Кумулятивні значення споживання їжі півниками-
бройлерами після внутрішньошлуночкових мікроін’єкцій
ізопротеренолу (400 нМ), яким передували мікроін’єкції
пропранололу в трьох різних дозах (40, 80 або 160 мкМ).
NEUROPHYSIOLOGY / НЕЙРОФИЗИОЛОГИЯ.—2015.—T. 47, № 2154
A. BAGHBANZADEH, Z. HAMIDIYA, and M. H. GERANMAYEH
and other testing variables [6]. In our study, possible
involvement of the central β1 and β2-adrenergic
systems on food and water intake in broiler chickens
was examined.
Experiment 1 showed a significant (P ≤ 0.05)
increase in food intake, but only at the highest dose of
ISOP applied. This is in agreement with observations
of Baile et al. [23], who showed that i.c.v. injections of
ISOP intensified feeding in sheep and cattle, although
Leibowitz [7] indicated that hypothalamic injection
of ISOP suppressed feeding behavior in rats. Stujii
and Bray [24] showed that administration of a β2-
adrenergic agonist into the third cerebral ventricle
reduced food intake in Zucker fatty and lean rats.
Our previous findings [17] showed that injections of
low doses of ISOP into the intralateral hypothalamic
area resulted in a significant transient reduction of
food intake in broilers, while higher doses of this
agent induced increased intake; the latter change was,
however, statistically insignificant.
The results of Experiment 2 indicated that ISOP at
all doses used exerted no significant (P ≤ 0.05) effects
on water intake in broilers. Our previous data where
much higher doses of ISOP were microinjected into
the hypothalamus showed an inhibitory effect on water
intake [17]. In rats, some investigations of the effects
of peripheral administration of ISOP and consequent
increased water intake through stimulation of β1- and
β2-adrenoceptor activity, respectively, resulted in an
increase in renin release and decrease in the blood
pressure [25].
In Experiment 3, a significantly decreased (P ≤ 0.05)
food intake at all doses of PROP used was found
30 min post injection. This is consistent with our
findings in Experiment 1 and suggests an orexigenic
role for β1- and/or β2-adrenoceptors. Thus, even the
lowest dose of PROP exerted an inhibitory effect
on food intake. This is not consistent with our
previous findings where lower doses of PROP into
the hypothalamus increased food intake significantly
[17]. Tsujii et al. [26] indicated that PROP injected
into the third cerebral ventricle increased food intake
in lean rats, but no change was observed in fatty rats.
Naka et al. [27] showed that application of timolol, a
β-adrenoceptor antagonist, to the bed nucleus of the
stria terminalis has no effect on food intake in rats.
The results of Experiment 4 indicated that PROP
induced a significant (P ≤ 0.05) transient increase
in water intake by chickens. These observations are
in agreement with our previous findings [17] that
suggested a stimulatory effect of PROP on food and
water intake. As was found [28], blocking of one type
of adrenoreceptors may enhance the responsiveness
of the other type. We believe that occupation of
β-receptors allows the endogenous epinephrine and
NE to be exposed more specifically to α-receptors.
It has been indicated that stimulation of α-receptors
has a stimulatory effect on food and water intake in
mammals [29] and birds [12, 30].
Our findings in Experiment 5 indicated that the
effect of ISOP on food intake is agonist-specific and
can be abolished by pretreatment with PROP. This is
in accordance with our previous findings [17]. Naka
et al. [27] showed that, unlike what is observed in
chickens, activation of β-adrenoceptors in the rat bed
nucleus of the stria terminalis decreases food intake,
and this effect can be abolished by co-administration
of a β-adrenoceptor antagonist.
It was shown that NE exerts a mild effect on β2-
receptors, whereas epinephrine and ISOP are very
active with respect to β2-receptor sites [31]. On the
other hand, epinephrine, and not NE, stimulates food
intake in birds. Thus, it may be concluded that the
orexigenic effects of ISOP are more dependent on β2-
adrenoceptors.
Therefore, our findings suggest that i.c.v. injections
of the β-adrenoreceptor agonist into food- and water-
deprived broiler cockerels induce an orexigenic effect
but do not influence water intake. The orexigenic
effect is specific and can be abolished by pretreatment
with a β-adrenoceptor blocker. The latter agent
induces significant transient stimulation of water
intake that might result from relative activation of
α-adrenoceptors exposed to the constitutively released
neurotransmitter.
Further investigations should be carried out to
elucidate separate effects of β1- and β2-adrenoceptors
using specific agonists and antagonists of these
adrenergic receptor subtypes. Also, the effect of
β-receptors should be studied under conditions where
α-adrenoceptors are blocked. The effects of longer
and shorter food and water deprivations will also be a
potential topic for future studies.
Acknowledgments. This research was supported by a
grant from the Research Council of the Faculty of Veterinary
Medicine, University of Tehran.
Animal handling and experimental procedures were
performed according to the Guide for Care and Use of Laboratory
Animals published by US National Institutes of Health (NIH
publication No. 85-23, revised 1996), and also with the current
ethical codes of Iran for handling laboratory animals.
NEUROPHYSIOLOGY / НЕЙРОФИЗИОЛОГИЯ.—2015.—T. 47, № 2 155
INVOLVEMENT OF CENTRAL β-ADRENERGIC CIRCUITRY IN FOOD AND WATER INTAKE
The authors of this study, A. Baghbanzadeh, Z. Hamidiya,
and M. H. Geranmayeh, confirm that the research and
publication of the results were not associated with any conflicts
regarding commercial or financial relations, relations with
organizations and/or individuals who may have been related to
the study, and interrelations between co-authors of the article.
A. Багхбанзаде1, З. Хамідія1, M. Х. Геранмайєх1
РОЛЬ ЦЕНТРАЛЬНИХ b-АДРЕНЕРГІЧНИХ МЕРЕЖ У
СПОЖИВАННІ ЇЖІ ТА ВОДИ КУРЧАТАМИ
1 Тегеранський університет (Іран).
Р е з ю м е
Було досліджено впливи інтрацеребровентрикулярних
мікроін’єкцій агоніста β1,2-адренорецепторів ізопротере-
нолу та блокатора β1,2-адренорецепторів пропранололу на
споживання їжі та води бройлерами-півниками, позбавле-
ними їжі та питва протягом 3 год. Виявилося, що ізопро-
теренол у концентрації 200 нM (але не менше) істотно
(P ≤ 0.05) посилював споживання їжі, але не води. Пропра-
нолол, ін’єкований у різних дозах (20–80 мкM), вірогідно
зменшував споживання їжі. Отримані дані свідчать на ко-
ристь гіпотез про орексигенну роль β
1
- та β
2
-адренергічних
систем у регуляції споживання їжі курчатами. Істотний
(P ≤ 0.05) ефект ін’єкцій пропранололу (тимчасове зрос-
тання споживання води) вказує на певну роль адренергічної
системи щодо регуляції споживання води бройлерами; цей
ефект, вірогідно, реалізується через α-адренорецептори та є
незалежним від впливів на споживання їжі.
REFERENCES
1. S. P. Grossman, “Eating or drinking elicited by direct
adrenergic or cholinergic stimulation of hypothalamus,”
Science, 132, No. 3422, 301-302 (1960).
2. C. K. Goldman, L. Marino, and S. F. Leibowitz, “Postsynaptic
β2-noradrenergic receptors mediate feeding induced by
paraventricular nucleus injection of norepinephrine and
clonidine,” Eur. J. Pharmacol., 115, No. 1, 11-19 (1985).
3. S. F. Leibowitz and C. Rossakis, “Mapping study of brain
dopamine- and epinephrine-sensitive sites which cause feeding
suppression in the rat,” Brain Res., 172, No. 1, 101-113 (1979).
4. S. P. Grossman, “Direct adrenergic and cholinergic stimulation
of hypothalamic mechanisms,” Am. J. Physiol., 202, 872-882
(1962).
5. C. Broekkamp and J. M. van Rossum, “Clonidine
induced intrahypothalamic stimulation of eating in rats,”
Psychopharmacologia, 25, No. 2, 162-168 (1972).
6. P. J. Wellman, “Norepinephrine and the control of food
intake,” Nutrition, 16, No. 10, 837-842 (2000).
7. S. F. Leibowitz, “Reciprocal hunger-regulating circuits
involving alpha- and beta-adrenergic receptors located,
respectively, in the ventromedial and lateral hypothalamus,”
Proc. Natl. Acad. Sci. USA, 67, No. 2, 1063-1070 (1970).
8. D. M. Denbow, J. A. Cherry, P. B. Siegel, and H. P. Van Krey,
“Eating, drinking and temperature response of chicks to
brain catecholamine injections,” Physiol. Behav., 27, No. 2,
265-269 (1981).
9. D. M. Denbow, H. P. Van Krey, M. P. Lacy, and T. J. Dietrick,
“Feeding, drinking and body temperature of Leghorn chicks:
Effects of ICV injections of biogenic amines,” Physiol. Behav.,
31, No. 1, 85-90 (1983).
10. D. M. Denbow, H. P. Van Krey, and P. B. Siegel, “Selection for
growth alters the feeding response to injections of biogenic
amines,” Pharmacol. Biochem. Behav., 24, No. 1, 39-42
(1986).
11. T. Bungo, M. Shimojo, Y. Masuda, et al., “Induction of
food intake by a noradrenergic system using clonidine and
fusaric acid in the neonatal chick,” Brain Res., 826, No. 2,
313-316 (1999).
12. T. Tachibana, K. Sugahara, H. Ueda, and M. A. Cline, “Role of
adrenergic alpha-2-receptors on feeding behavior in layer-type
chicks,” Gen. Comp. Endocrinol., 161, No. 3, 407-411 (2009).
13. T. Tachibana, T. Takagi, E. S. Saito, et al., “Beta 3-adrenergic
receptor is involved in feeding regulation in chicks,” Comp.
Biochem. Physiol. - Mol. Integr. Physiol., 135, No. 3, 403-409
(2003).
14. S. A. Kanzler, A. C. Januario, and M. A. Paschoalini,
“Involvement of β 3-adrenergic receptors in the control of food
intake in rats,” Braz. J. Med. Biol. Res., 44, No. 11, 1141-1147
(2011).
15. M. Castillo-Melйndez, M. J. McKinley, and R. J. Summers,
“Intracerebroventricular administration of the b3-adrenoceptor
agonist CL 316243 causes Fos immunoreactivity in discrete
regions of rat hypothalamus,” Neurosci. Lett., 290, No. 3, 161-
164 (2000).
16. T. Yoshida, Y. Takakura, and N. Sakane, “The relationship
between beta 3-adrenoceptor and regulation of body fat mass,
and food intake,” Nippon Rinsho, 59, No. 3, 437-442 (2001).
17. A. Baghbanzadeh, M. R. Hajinezhad, B. Shohreh, and
R. Maleklou, “Intralateral hypothalamic area injection of
isoproterenol and propranolol affects food and water intake in
broilers,” J. Comp. Physiol. Ser. A. Neuroethol., Sens., Neural
Behav. Physiol., 196, No. 3, 221-226 (2010).
18. A. Baghbanzadeh, M. Modirsaneie, G. Emam, and
M. Hajinezhad, “Microhandling of vesicular glutamate up-
take modulates feeding in broilers,” J. Anim. Physiol. Anim.
Nutr., 94, No. 1, 74-77 (2010).
19. W. J. Kuenzel and M. Masson, A Stereotaxic Atlas of the Brain
of the Chick (Gallus domesticus), Johns Hopkins Univ. Press,
Baltimore (1988).
20. M. J. Fregly, N. E. Rowland, C. Sumners, and D. B. Gor-
d o n , “ R e d u c e d d i p s o g e n i c r e s p o n s i v e n e s s t o
intracerebroventricularly administered angiotensin II in
estrogen-treated rats,” Brain Res., 338, No. 1, 115-121 (1985).
21. F. S. Tepperman, M. Hirst, and C. W. Gowdey, “A probable
role for norepinephrine in feeding after hypothalamic in-
jection of morphine,” Pharmacol. Biochem. Behav., 15, No. 4,
555-558 (1981).
22. P. J. Wellman, B. T. Davies, A. Morien, and L. McMahon,
“Modulation of feeding by hypothalamic paraventricular
nucleus α1- and α2-adrenergic receptors,” Life Sci., 53, No. 9,
669-679 (1993).
23. C. A. Baile, L. F. Krabill, and C. W. Simpson, “Feeding
elicited by α and β adrenoceptor agonists in sheep and
NEUROPHYSIOLOGY / НЕЙРОФИЗИОЛОГИЯ.—2015.—T. 47, № 2156
A. BAGHBANZADEH, Z. HAMIDIYA, and M. H. GERANMAYEH
cattle,” Pharmacol. Biochem. Behav., 1, No. 5, 531-538 (1973).
24. S. Stujii and G. A. Bray, “Food intake of lean and obese Zucker
rats following ventricular infusions of adrenergic agonists,”
Brain Res., 587, No. 2, 226-232 (1992).
25. R. F. Kirby, C. M. Novak, R. L. Thurnhorst, and A. K. Johnson,
“The role of beta1 and beta2 adrenoceptors in isoproterenol-
induced drinking,” Brain Res., 656, No. 1, 79-84 (1994).
26. S. Tsujii and G. A. Bray, “A β-3 adrenergic agonist (BRL-
37,344) decreases food intake," Physiol. Behav., 63, No. 4,
723-728 (1998).
27. T. Naka, S. Ide, T. Nakako, et al . , “Activation of
β-adrenoceptors in the bed nucleus of the stria terminalis
induces food intake reduction and anxiety-like behaviors,”
Neuropharmacology, 67, 326-330 (2013).
28. R. Racotta and L. M. Soto-Mora, “Specificity of alpha- and
beta-adrenergic inhibition of water and food intake,” Physiol.
Behav., 53, No. 2, 361-365 (1993).
29. S. F. Leibowitz, “Ingestion in the satiated rat: role of alpha
and beta receptors in mediating effects of hypothalamic adren-
ergic stimulation,” Physiol. Behav., 14, No. 6, 743-754 (1975).
30. Y. H. Choi, M. Furuse, J. I. Okumura, and D. M. Denbow, “The
interaction of clonidine and nitric oxide on feeding behavior
in the chicken,” Brain Res., 699, No. 1, 161-164 (1995).
31. H. R. Adams, “Drugs acting on autonomic and somatic nervous
system,” in: Veterinary Pharmacology and Therapeutics,
H. R. Adams (ed.), Iowa State Univ. Press (2001), pp. 69-90.
|