Prognostic Value of Electrophysiological Parameters for the Recovery of Motor Functions in Stroke Patients
We estimated correlations between baseline electrophysiological parameters and motor functions in patients with subacute stroke, in order to identify their predictive value for motor and functional recovery after a 4-week-long rehabilitation period. Sixty patients with subacute stroke were enroll...
Збережено в:
Дата: | 2015 |
---|---|
Автори: | , , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут фізіології ім. О.О. Богомольця НАН України
2015
|
Назва видання: | Нейрофизиология |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/148183 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Prognostic Value of Electrophysiological Parameters for the Recovery of Motor Functions in Stroke Patients / S.M. Kim, J.H. Kim, B.R. Kim, Ch.W. Hyun, E.Yo. Han // Нейрофизиология. — 2015. — Т. 47, № 2. — С. 181-187. — Бібліогр.: 26 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-148183 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1481832019-02-18T01:23:21Z Prognostic Value of Electrophysiological Parameters for the Recovery of Motor Functions in Stroke Patients Kim, S.M. Kim, J.H. Kim, B.R. Hyun, Ch.W. E. Yo. Han We estimated correlations between baseline electrophysiological parameters and motor functions in patients with subacute stroke, in order to identify their predictive value for motor and functional recovery after a 4-week-long rehabilitation period. Sixty patients with subacute stroke were enrolled. Somatosensory evoked potentials (SSEPs), compound motor action potentials (CMAPs), and sensory nerve action potentials (SNAPs) were recorded, and the amplitude ratios were calculated in the components of these potentials. Clinical parameters consisted of the Korean-modified Barthel index (K-MBI), motricity index (MI), and manual function test (MFT). After the rehabilitation period, these indices were re-evaluated. The ulnar CMAP amplitude was found to significantly correlate with all clinical outcome indices. Additionally, a multivariate linear regression analysis revealed that the ulnar CAMP amplitude ratio was an independent predictor for the baseline MI of the upper extremity and K-MBI. The median SSEP amplitude ratio was an independent prognostic factor for the follow-up MI of the upper extremity, MFT, and follow-up K-MBI. Our results indicate that not only is the median SSEP amplitude ratio a prognostic factor for the motor functions and functional recovery, but also the ulnar CMAP amplitude might be an independent predictor in subacute stroke patients. Ми оцінювали кореляції між вихідними електрофізіологічними параметрами та моторними функціями у пацієнтів із підгострим інсультом з ціллю ідентифікувати прогностичну цінність цих даних для моторного та функціонального відновлення після чотиритижневого періоду реабілітації. Відводили соматосенсорні викликані потенціали (SSEP), складні моторні потенціали дії (CMAP) та складні сенсорні нервові потенціали дії (SNAP); розраховували відношення амплітуд цих потенціалів та їх компонентів. Серед клінічних параметрів оцінювали індекс Бартела, модифікований для умов Кореї (K-MBI), індекс моторної сфери (MI) та тест мануальних функцій (MFT). Ці індекси повторно оцінювалися після періоду реабілітації. Амплітуда CMAP, викликаних стимуляцією ульнарного нерва, вірогідно корелювала з усіма клінічними показниками. Крім того, аналіз мультиваріативної лінійної регресії показав, що відношення амплітуд ульнарних CAMP є незалежним предиктором вихідного MI для верхньої кінцівки та K-MBI. Відношення амплітуд SSEP, викликаних стимуляцією медіанного нерва, було незалежним прогностичним фактором для післяреабілітаційного MI верхніх кінцівок, MFT і післяреабілітаційного K-MBI. Наші результати свідчать про те, що не тільки відношення амплітуд медіанних SSEP є прогностичним фактором щодо моторних функцій та функціонального відновлення; амплітуда ульнарних CMAP теж може бути незалежним предиктором у пацієнтів із підгострим інсультом. 2015 Article Prognostic Value of Electrophysiological Parameters for the Recovery of Motor Functions in Stroke Patients / S.M. Kim, J.H. Kim, B.R. Kim, Ch.W. Hyun, E.Yo. Han // Нейрофизиология. — 2015. — Т. 47, № 2. — С. 181-187. — Бібліогр.: 26 назв. — англ. 0028-2561 http://dspace.nbuv.gov.ua/handle/123456789/148183 612.014:616.831 –005.1 en Нейрофизиология Інститут фізіології ім. О.О. Богомольця НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We estimated correlations between baseline electrophysiological parameters and motor
functions in patients with subacute stroke, in order to identify their predictive value for motor
and functional recovery after a 4-week-long rehabilitation period. Sixty patients with subacute
stroke were enrolled. Somatosensory evoked potentials (SSEPs), compound motor action
potentials (CMAPs), and sensory nerve action potentials (SNAPs) were recorded, and the
amplitude ratios were calculated in the components of these potentials. Clinical parameters
consisted of the Korean-modified Barthel index (K-MBI), motricity index (MI), and manual
function test (MFT). After the rehabilitation period, these indices were re-evaluated. The
ulnar CMAP amplitude was found to significantly correlate with all clinical outcome indices.
Additionally, a multivariate linear regression analysis revealed that the ulnar CAMP amplitude
ratio was an independent predictor for the baseline MI of the upper extremity and K-MBI.
The median SSEP amplitude ratio was an independent prognostic factor for the follow-up
MI of the upper extremity, MFT, and follow-up K-MBI. Our results indicate that not only is
the median SSEP amplitude ratio a prognostic factor for the motor functions and functional
recovery, but also the ulnar CMAP amplitude might be an independent predictor in subacute
stroke patients. |
format |
Article |
author |
Kim, S.M. Kim, J.H. Kim, B.R. Hyun, Ch.W. E. Yo. Han |
spellingShingle |
Kim, S.M. Kim, J.H. Kim, B.R. Hyun, Ch.W. E. Yo. Han Prognostic Value of Electrophysiological Parameters for the Recovery of Motor Functions in Stroke Patients Нейрофизиология |
author_facet |
Kim, S.M. Kim, J.H. Kim, B.R. Hyun, Ch.W. E. Yo. Han |
author_sort |
Kim, S.M. |
title |
Prognostic Value of Electrophysiological Parameters for the Recovery of Motor Functions in Stroke Patients |
title_short |
Prognostic Value of Electrophysiological Parameters for the Recovery of Motor Functions in Stroke Patients |
title_full |
Prognostic Value of Electrophysiological Parameters for the Recovery of Motor Functions in Stroke Patients |
title_fullStr |
Prognostic Value of Electrophysiological Parameters for the Recovery of Motor Functions in Stroke Patients |
title_full_unstemmed |
Prognostic Value of Electrophysiological Parameters for the Recovery of Motor Functions in Stroke Patients |
title_sort |
prognostic value of electrophysiological parameters for the recovery of motor functions in stroke patients |
publisher |
Інститут фізіології ім. О.О. Богомольця НАН України |
publishDate |
2015 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/148183 |
citation_txt |
Prognostic Value of Electrophysiological Parameters for the Recovery of Motor Functions in Stroke Patients / S.M. Kim, J.H. Kim, B.R. Kim, Ch.W. Hyun, E.Yo. Han // Нейрофизиология. — 2015. — Т. 47, № 2. — С. 181-187. — Бібліогр.: 26 назв. — англ. |
series |
Нейрофизиология |
work_keys_str_mv |
AT kimsm prognosticvalueofelectrophysiologicalparametersfortherecoveryofmotorfunctionsinstrokepatients AT kimjh prognosticvalueofelectrophysiologicalparametersfortherecoveryofmotorfunctionsinstrokepatients AT kimbr prognosticvalueofelectrophysiologicalparametersfortherecoveryofmotorfunctionsinstrokepatients AT hyunchw prognosticvalueofelectrophysiologicalparametersfortherecoveryofmotorfunctionsinstrokepatients AT eyohan prognosticvalueofelectrophysiologicalparametersfortherecoveryofmotorfunctionsinstrokepatients |
first_indexed |
2025-07-12T18:32:42Z |
last_indexed |
2025-07-12T18:32:42Z |
_version_ |
1837467085826949120 |
fulltext |
NEUROPHYSIOLOGY / НЕЙРОФИЗИОЛОГИЯ.—2015.—T. 47, № 2 181
UDC 612.014:616.831 –005.1
S. M. KIM1, J. H. KIM1, B. R. KIM1, Ch. W. HYUN1, and E. Yo. HAN1
PROGNOSTIC VALUE OF ELECTROPHYSIOLOGICAL PARAMETERS FOR THE
RECOVERY OF MOTOR FUNCTIONS IN STROKE PATIENTS
Received January 15, 2014
We estimated correlations between baseline electrophysiological parameters and motor
functions in patients with subacute stroke, in order to identify their predictive value for motor
and functional recovery after a 4-week-long rehabilitation period. Sixty patients with subacute
stroke were enrolled. Somatosensory evoked potentials (SSEPs), compound motor action
potentials (CMAPs), and sensory nerve action potentials (SNAPs) were recorded, and the
amplitude ratios were calculated in the components of these potentials. Clinical parameters
consisted of the Korean-modified Barthel index (K-MBI), motricity index (MI), and manual
function test (MFT). After the rehabilitation period, these indices were re-evaluated. The
ulnar CMAP amplitude was found to significantly correlate with all clinical outcome indices.
Additionally, a multivariate linear regression analysis revealed that the ulnar CAMP amplitude
ratio was an independent predictor for the baseline MI of the upper extremity and K-MBI.
The median SSEP amplitude ratio was an independent prognostic factor for the follow-up
MI of the upper extremity, MFT, and follow-up K-MBI. Our results indicate that not only is
the median SSEP amplitude ratio a prognostic factor for the motor functions and functional
recovery, but also the ulnar CMAP amplitude might be an independent predictor in subacute
stroke patients.
Keywords: stroke, electroneurography, electromyography, somatosensory evoked
potentials, prognostic value, motor recovery, functional recovery.
1Department of Rehabilitation Medicine, Jeju National University Hospital,
Jeju National University School of Medicine, Jeju, Republic of Korea.
Correspondence should be addressed to
E. Yo. Han (e-mail: clearblue10@naver.com).
INTRODUCTION
Stroke is one of the major causes of disability that
impairs the motor functions and activities of daily
living (ADL) [1]. The optimal goal of comprehensive
rehabilitation is to improve the basic mobility and ADL
skills up to the maximal possible level. In addition, it
is very important to predict the course of recovery,
which is essential for setting the appropriate mode
of rehabilitation therapy. Of many assessment tools,
previous studies have reported that the parameters
of somatosensory evoked potentials (SSEPs) could
predict most adequately the functional outcomes of
stroke [2-4].
To date, however, only few studies have discussed
the predictive value of peripheral nerve conduction
parameters. Within an early stage of the onset of
stroke, there is a motor unit loss in patients with
stroke on the hemiparetic side because of transsynaptic
degeneration. In addition, it has also been suggested
that there is a correlation between the motor unit loss
and hemiparetic severity [5, 6]. We have, therefore,
hypothesized that the peripheral nerve conduction
parameters and those of SSEPs have a significant
prognostic value.
The aims of this study were as follows:
(i) To analyze correlations between baseline
electrophysiological parameters (e.g., the peripheral
nerve conduction ones and those of SSEPs) and
baseline motor and functional parameters in patients
with subacute stroke.
(ii) To identify electrophysiological parameters
with the highest predictive value for the motor and
functional recovery after a 4-week rehabilitation.
METHODS
Subjects. In patients who were admitted to our
hospital, stroke-related lesions involved unilaterally
the cortical or subcortical areas, as confirmed by
computed tomography (CT) or magnetic resonance
NEUROPHYSIOLOGY / НЕЙРОФИЗИОЛОГИЯ.—2015.—T. 47, № 2182
S. M. KIM, J. H. KIM, B. R. KIM et al.
imaging (MRI). Sixty subjects (26 men and 34 women)
with a mean age of 66.5 years (range 38-89 years) had
an onset of subacute stroke within three months. In our
series, there were 46 cases of cerebral infarction and
14 cases of cerebral hemorrhage. Among the patients,
there were 27 right-sided and 33 left-sided cases.
Inclusion criteria for our study are as follows:
(i) relatively preserved level of consciousness; (ii)
first cerebrovascular episode, and (iii) unilateral
hemispheric lesion.
Among the exclusion cri teria, there were:
(i) cognitive loss or dementia; (ii) the presence
of pacemaker or other electromedical implant
devices; (iii) diabetes or peripheral neuropathy; (iv)
convulsions; (v) neglect or visuospatial disorders;
(vi) joint contractures and/or deformities, and (vii)
intracranial metal implants.
Assessment of Electrophysiological Findings.
Nerve conduction studies were performed by the use
of “Medelec Synergy” EMG set (Medelec Synergy,
Great Britain), for which the conventional techniques
of percutaneous stimulation and surface electrode
recording were used at a skin temperature of > 32°C.
The condition of the motor nerves was evaluated by
bilateral recording from the median nerves innervating
the mm. abductor pollicis brevis , ulnar nerves
innervating the mm. abductor digiti minimi, peroneal
nerves innervating the mm. extensor digitorum brevis,
and tibial nerves innervating the mm. abductor
hallucis. The distance between the distal stimulation
point and the active recording electrode was set at
70 mm in the upper extremities and 80 mm in the
lower ones. This was followed by measurements of the
latency, amplitude, and side-to-side (affected/sound
side) amplitude ratio based on the compound muscle
action potentials (CMAPs).
Sensory nerve conduction studies were performed
bilaterally on the median, ulnar, superficial peroneal,
and sural nerves with the placement of an active
electrode at a 140 mm above position, for which the
antidromic stimulation technique was used. At least 10
responses were recorded and then averaged. Standard
low- and high- frequency filter settings were 20 and
10 kHz for the motor nerve conduction study and 20
Hz and 2 kHz for the sensory nerve conduction study.
The latency, amplitude, and side-to-side (affected/
sound side) amplitude ratio were measured based on
the sensory nerve action potentials (SNAPs).
For SSEP investigation, the median nerve was
stimulated at the wrist level with a frequency of 3 sec–1,
pulse duration 0.1 msec, and current strength enough
to produce minimal twitches of the thenar muscle.
Two traces of at least 250 averaged responses were
recorded. Responses were recorded using scalp needle
electrodes with the active one over contralateral C3/C4,
while the reference was located at Fz. The posterior
tibial nerve was stimulated at the ankle level; SSEPs
were recorded from the Cz site with the reference
electrode placed at Fz. The following parameters
were measured bilaterally: N20 latency, N20-P25
peak-to-peak amplitude, and N20-P25 affected/
sound side amplitude ratio during the median SSEP
test. For the posterior tibial SSEP, the P40 latency,
P40-N50 amplitude, and P40-N50 amplitude ratio
were estimated. Among these data, we accepted
the amplitude ratio of N20-P25, that of P40-N50,
and CMAP, and SNAP parameters as the main
electrophysiological indices.
Assessment of the ADL Function. The Korean-
modified Barthel index (K-MBI) was used for
characterization of the ADL functions. The MBI is a
reliable and valid tool for measuring the functional
status of the patients with stroke, and the Korean
version of the MBI has been validated [7].
Assessment of the Motor Function. The motricity
index (MI) was used to assess the motor impairment
after stroke. The muscle strength for the upper and
lower limbs was calculated as the MI for the following
movements, shoulder abduction, elbow flexion, and
wrist extension for the upper limb and hip flexion,
knee extension, and ankle extension for the lower
limb. Of several possible MI scores, we measured the
hemiparetic side score, namely (side arm score + side
leg score)/2 [8].
The manual function test (MFT) was used to
assess the motor function of the upper extremities;
it included eight subtests, namely forward elevation
of the arm, lateral elevation of the arm, touching the
occiput with the palm, touching the back with the
palm, grasping, pinching, and carrying out cubes and
pegboard manipulations. The ratings could vary from 0
(maximally severely impaired) to 32 points (full
function).
All the assessments were performed at baseline
evaluation and repeated four weeks after conventional
rehabilitation therapies consisting of physical and
occupational therapies focused on the mobility and
ADL training.
Statistical Analysis. All statistical analyses were
performed using the SPSS statistical package (version
12.0, SPSS Inc., USA). The Student’s t-test was used
to compare baseline values, such as the motor function,
NEUROPHYSIOLOGY / НЕЙРОФИЗИОЛОГИЯ.—2015.—T. 47, № 2 183
PROGNOSTIC VALUE OF ELECTROPHYSIOLOGICAL PARAMETERS FOR THE RECOVERY
ADL function, and electrophysiological parameters
according to the sex, stroke type, and lesion side.
Pearson’s correlation analysis was used to assess the
relationships among baseline values of the motor
function, ADL function, and electrophysiological
parameters and to assess the relationships among
electrophysiological parameters, follow-up motor
function, and follow-up ADL function. Multivariate
linear regression analysis using a backward selection
linear regression model was employed to determine
whether the baseline electrophysiological parameters
were significant predictors of the motor and ADL
functions at baseline and at four weeks after
rehabilitation. P values below 0.05 were considered
indications of statistical significance in intergroup
comparisons.
RESULTS
Baseline Evaluation of the Electrophysiological
Parameters. Mean values of these parameters,
including the SSEP, CMAP, and SNAP amplitude
ratios, are shown in Table 1.
Correlations among the ADL Function, Motor
Functions at Baseline and Follow-Up, and Electro-
physiological Parameters at Baseline. Correlations
of nerve conduction parameters at baseline and clini-
T a b l e 1. Mean Values of the Amplitude Electrophysiological Parameters
Т а б л и ц я 1. Середні значення амплітудних електрофізіологічних параметрів
Side-to-side amplitude ratio (%)
Median SSEP 0.48 ± 0.51
Tibial SSEP 0.59 ± 0.49
Median motor 0.84 ± 0.23
Ulnar motor 0.80 ± 0.22
Peroneal motor 0.85 ± 0.37
Tibial motor 1.01 ± 0.26
Median sensory 0.91 ± 0.41
Ulnar sensory 0.97 ± 0.35
Superficial peroneal sensory 0.66 ± 0.53
Sural sensory 0.97 ± 0.59
Footnotes: means ± s.d. are shown; SSEP, somatosensory evoked potential
T a b l e 2. Correlations among the ADL Function, Motor Functions at Baseline and Follow-Up, and Nerve Conduction Parameters
at Baseline
Т а б л и ц я 2. Кореляції між функцією повсякденного життя (ADL), моторною функцією у вихідному стані і після
реабілітації та параметрами нервового проведення у вихідному стані
Clinical parameter
Pearson’s correlation coefficient (r)
MMAR UMAR PMAR TMAR MSAR USAR PSAR SSAR
MFT Baseline 0.24 0.52** –0.16 0.25 0.19 0.27 –0.04 –0.11
F-up 0.35 0.46** –0.20 0.17 0.23 0.35 –0.04 –0.26
MI upper
limb
Baseline 0.28 0.55** –0.18 0.20 0.13 0.26 –0.10 –0.12
F-up 0.21 0.38** –0.13 0.15 0.15 0.19 –0.10 –0.03
MI lower
limb
Baseline 0.08 0.44** 0.03 0.13 0.00 0.23 0.43 –0.11
F-up 0.11 0.33* 0.07 0.19 0.06 0.19 0.10 –0.06
K-MBI
Baseline 0.15 0.34** 0.04 0.15 0.26 0.18 0.18 –0.05
F-up 0.15 0.29** 0.08 0.20 0.25 0.23 0.24 –0.41*
Footnotes: MFT, manual function test; MI, motricity index; K-MBI, Korean-modified Barthel index; F-up, follow-up; MMAR, median motor
amplitude ratio; UMAR, ulnar motor amplitude ratio; PMAR, peroneal motor amplitude ratio; TMAR, tibial motor amplitude ratio; MSAR,
median sensory amplitude ratio; USAR, ulnar sensory amplitude ratio, PSAR, superficial peroneal sensory amplitude ratio, and SSAR, sural
sensory amplitude ratio. * P< 0.05; ** P < 0.01.
NEUROPHYSIOLOGY / НЕЙРОФИЗИОЛОГИЯ.—2015.—T. 47, № 2184
S. M. KIM, J. H. KIM, B. R. KIM et al.
cal measures of outcome consisting of the ADL and
motor function before and after rehabilitation are sum-
marized in Table 2. The side-to-side amplitude ratio
of the ulnar CMAP demonstrated significant correla-
tion with all clinical outcome indices, both at baseline
and follow-up (Table 2). In multivariate linear regres-
sion analysis, the ulnar CMAP amplitude ratio among
nerve conduction parameters was a significant inde-
pendent factor of the baseline MI of the upper extrem-
ity (beta = 0.474, P < 0.01, adjusted R2 = 0.306) and
the baseline K-MBI (beta = 0.356, P = 0.028, adjusted
R2 = 0.103).
Correlations among the ADL function, motor func-
tions at baseline and follow-up, and SSEP parameters
at baseline are summarized in Table 3. The median
SSEP amplitude ratio revealed significant correlations
with the follow-up MI of upper extremity (r = 0.37,
P < 0.01), follow-up MI of the lower extremity
(r = 0.29, P < 0.05), and follow-up K-MBI (r = 0.28,
P < 0.05). The tibial SSEP amplitude ratio revealed
significant correlations with the baseline MI of the
lower extremity (r = 0.39, P < 0.01), follow-up MI of
the lower extremity (r = 0.38, P < 0.01), and follow-
up K-MBI (r = 0.27, P < 0.05) (Table 3). According to
multivariate regression analysis, the baseline MI of the
upper extremity (beta = 0.848, P < 0.001) and median
SSEP amplitude ratio (beta = 0.140, P = 0.048) were
independent prognostic factors for the follow-up MI of
the upper extremity (adjusted R2 = 0.792). The base-
line MFT (beta = 0.897, P < 0.001) and median SSEP
amplitude ratio (beta = 0.176, P = 0.024) were inde-
pendent prognostic factors for the follow-up MFT (ad-
justed R2 = 0.859). The baseline K-MBI (beta = 0.424,
P = 0.010), MI of the lower extremity (beta = 0.430,
p = 0.010), and median SSEP amplitude ratio
(beta = 0.251, P = 0.010) were independent prognostic
factors of the follow-up K-MBI (adjusted R2 = 0.707).
DISCUSSION
Our study demonstrated that the peripheral nerve
conduction parameters and those of SSEP correlated
with the motor and ADL functions in patients with
subacute stroke. In addition, our results also showed
that the ulnar CMAP amplitude ratio demonstrated
strong correlation with the motor function of the upper
extremity and ADL functions. Moreover, our results
also showed that the median SSEP, as well as clinical
parameters, can be considered independent prognostic
factors for the motor function of the upper extremity,
manual function, and ADL functions after a 4-week-
long rehabilitation with the corresponding procedures.
To date, it is obvious that there are pathological
modifications in motor units in patients with stroke
lesions. Several studies suggested that there is a
correlation between changes in the motor units on
the hemiparetic side and severity of hemiparesis in
patients with stroke [5, 6, 9-12]. In addition, some
authors also believed that the decreased CMAP
amplitude on the hemiparetic side might be indicative
of the decreased number of motor units [9, 11]. Other
authors, however, suggested that this may result from
the loss of functioning motor units on the hemiparetic
side in patients with stroke [10, 12].
Changes in the peripheral nerve function on the
T a b l e 3. Correlations among the ADL function, Motor Function at Baseline and Follow-Up, and SSEP Parameters at Baseline
Т а б л и ц я 3. Кореляції між функцією повсякденного життя, моторною функцією у вихідному стані і після реабілітації та
параметрами соматосенсорних викликаних потенціалів у вихідному стані
Clinical parameter
Pearson’s correlation coefficient (r)
Median SSEP amplitude ratio Tibial SSEP amplitude ratio
MFT
Baseline 0.26 0.24
F-up 0.35* 0.14
MI,
upper limb
Baseline 0.23 0.19
F-up 0.37** 0.24
MI ,
lower limb
Baseline 0.19 0.39**
F-up 0.29* 0.38**
K-MBI
Baseline 0.08 0.21
F-up 0.28* 0.27*
Footnotes: SSEP, somatosensory evoked potential; other designations are similar to those in Table 2.
NEUROPHYSIOLOGY / НЕЙРОФИЗИОЛОГИЯ.—2015.—T. 47, № 2 185
PROGNOSTIC VALUE OF ELECTROPHYSIOLOGICAL PARAMETERS FOR THE RECOVERY
paretic side could be explained by various theories.
Some studies demonstrated that alterations in the
homeostasis and neurovascular regulation induced
by changes in the tissue composition and fiber
type distribution could occur on the paretic side in
stroke patients [13, 14]. It has also been proposed
that a decreased number of motor units on the
hemiparetic side is due to transsynaptic degeneration
of motoneurons caused by upper motor lesions [5].
Moreover, the decreased number of motor units would
result from deprivation of trophic inputs received via
descending motor pathways [15]. Kondo et al. [16]
reported that, probably, there is a possible correlation
between the extent of degeneration of the lateral
corticospinal tract and fiber loss in the ventral roots
of patients with stroke. Moreover, these authors also
presumed that a transsynaptic effect of the degenerated
lateral corticospinal tract promoted fiber loss in the
ventral roots.
On the other hand, there is also a possibility that the
lower motor injury might be involved after the onset
of stroke. Van Kuijk et al. [17] have hypothesized that
the lower motor neuron lesion manifested in axonal
involvement might arise from an independent “dying
back” neuropathy due to de-afferentation of lower
motor units in patients with upper motor lesions.
Based on this theoretical background, transsynaptic
degeneration secondary to the upper motor lesion
would be followed by further loss of motor units in
patients with severe hemiparesis [5]. This suggests
that the prevalent occurrence of degeneration was
associated with a greater severity of hemiparesis.
Objective assessment of the current state and early
prediction of the expected recovery can provide
appropriate guidelines for rehabilitation therapy [18,
19]. Several studies were conducted to examine the
relationship between various electrophysiological
parameters and stroke outcomes. Hara et al. [5]
examined the median motor F-wave, thus reporting
that the number of motor units on the hemiparetic
side was significantly smaller, as compared with
the unaffected side, in patients with ischemic stroke
who had a more than 9-year history of hemiparesis.
These authors also noted that the degree of motor
unit loss was significantly higher in patients with
severe hemiparesis. It has also been reported that the
persistent presence of the F-wave, obtained through
repetitive stimulation of the ulnar nerve, is associated
with the level of consciousness in patients with acute
stroke [20, 21]. According to Lukacs [6], there was
significant correlation between the ulnar CMAP
amplitude, rather than ulnar SNAP and the severity
of hemiparesis, in 48 patients with ischemic stroke.
This finding agrees with our results. In the current
study, however, we performed nerve conduction
studies for various nerves, including the ulnar nerve
in patients with stroke presenting with hemorrhage
and ischemia. Moreover, we also evaluated the ADL
functions, as well as the motor function, in these
patients. Our results showed that the ulnar CMAP
amplitude ratio demonstrated significant correlation
with all considered baseline clinical indices in
patients with subacute stroke. The multivariate linear
analysis showed that the ulnar CMAP amplitude ratio
can be interpreted as a significant predictor for the
baseline MI of the upper extremity and the baseline
ADL function. The parameters of the upper-extremity
motor events at the subacute stroke phase had a
higher clinical value than the parameters of the lower
extremities for evaluation of progression of Wallerian
degeneration after the stroke onset. It was considered
that the prolonged time period elapsed until the
appearance of electrophysiological abnormalities in
the distal limb muscles was due to the greater segment
of nerve degeneration [22].
Paolni et al. [23] reported abnormal findings of
peripheral nerve conduction parameters on the sound
side in patients with ischemic stroke, as compared
with the normal controls. These authors also suggested
that stroke is a primary cardiovascular event and that
it might show a strong correlation with peripheral
nervous system (PNS) disorders. Considering this,
we selected the CMAP amplitude ratio as a sensitive
parameter in screening minimal changes in the
peripheral nerve conduction after the onset of stroke.
Thus, we found that the ulnar CMAP amplitude ratio
was a useful indicator for the post-stroke severity of
the motor and ADL functions.
In addition, SSEPs are also an objective tool for
assessing the integrity of sensory and motor pathways
and the involved areas of the CNS.The alterations in
SSEPs are significant prognostic indicators for the
degree of proprioceptive loss [24]. Previous studies
have reported that there is correlation between the
SSEP parameters and clinical outcomes [2-4, 25, 26].
In our study, however, we evaluated the predictive
value of the SSEP amplitude ratio with motor
parameters at baseline [3, 4] rather than with central
conduction delay, which has been widely accepted as
a prognostic factor. We also found that there are strong
correlations between the median SSEP amplitude ratio,
follow-up MI of the upper limb, MFT, and K-MBI.
NEUROPHYSIOLOGY / НЕЙРОФИЗИОЛОГИЯ.—2015.—T. 47, № 2186
S. M. KIM, J. H. KIM, B. R. KIM et al.
There are two limitations in our study: (i) we
enrolled a relatively large number of patients in
our study, but this number was not sufficient for
the subgroup analysis, and (ii) a 4-week course of
therapeutic intervention might be insufficient to
achieve a complete recovery after the onset of stroke
in some patients.
Further larger-scale and longer-term follow-
up studies are, therefore, warranted to establish
the prognostic value of certain electrophysiologic
parameters.
In conclusion, our results indicated that not only is
the ulnar CMAP amplitude an independent predictor
of the upper-extremity motor and ADL functions in pa-
tients with subacute stroke, but also the median SSEP
amplitude ratio might be a relatively strong prognostic
factor for the motor functions of the upper extremity
and functional recovery.
Acknowledgements. This work was supported by a research
grant from the Hyocheon Academic Research Fund of Jeju
National University in 2012.
All testing procedures were in accordance with the
ethical standards of the responsible Committees on human
experimentation (institutional and national) and with the
Helsinki Declaration of 1975, as revised in 2000 (5). Written
informed consent was obtained from all patients for being
included in the study.
The authors of this study, S. M. Kim, J. H. Kim, B. R. Kim,
Ch. W. Hyun, and E. Yo. Han, declare that the research and
publication of the results were not associated with any conflicts
regarding commercial or financial relations, relations with
organizations and/or individuals who may have been related to
the study, and interrelations between co-authors of the article.
С. М. Кім1, Дж. Х. Кім1, Б. Р. Кім1, Ч. В. Хюн1, Е. Йо. Хан1
ПРОГНОСТИЧНА ЦІННІСТЬ ЕЛЕКТРОФІЗІОЛОГІЧНИХ
ПАРАМЕТРІВ ЩОДО ВІДНОВЛЕННЯ МОТОРНИХ
ФУНКЦІЙ У ПАЦІЄНТІВ З ІНСУЛЬТОМ
1Національна університетська лікарня Джеджу
Національного медичного університету, Джеджу
(Республіка Корея).
Р е з ю м е
Ми оцінювали кореляції між вихідними електрофізіологіч-
ними параметрами та моторними функціями у пацієнтів із
підгострим інсультом з ціллю ідентифікувати прогностич-
ну цінність цих даних для моторного та функціонального
відновлення після чотиритижневого періоду реабілітації.
Відводили соматосенсорні викликані потенціали (SSEP),
складні моторні потенціали дії (CMAP) та складні сенсорні
нервові потенціали дії (SNAP); розраховували відношення
амплітуд цих потенціалів та їх компонентів. Серед клініч-
них параметрів оцінювали індекс Бартела, модифікований
для умов Кореї (K-MBI), індекс моторної сфери (MI) та тест
мануальних функцій (MFT). Ці індекси повторно оцінюва-
лися після періоду реабілітації. Амплітуда CMAP, виклика-
них стимуляцією ульнарного нерва, вірогідно корелювала з
усіма клінічними показниками. Крім того, аналіз мультива-
ріативної лінійної регресії показав, що відношення амплі-
туд ульнарних CAMP є незалежним предиктором вихідного
MI для верхньої кінцівки та K-MBI. Відношення амплітуд
SSEP, викликаних стимуляцією медіанного нерва, було неза-
лежним прогностичним фактором для післяреабілітаційно-
го MI верхніх кінцівок, MFT і післяреабілітаційного K-MBI.
Наші результати свідчать про те, що не тільки відношення
амплітуд медіанних SSEP є прогностичним фактором щодо
моторних функцій та функціонального відновлення; амплі-
туда ульнарних CMAP теж може бути незалежним предик-
тором у пацієнтів із підгострим інсультом.
REFERENCES
1. G. E. Gresham, T. E. Fitzpatrick, P. A. Wolf, et al., “Residual
disability in survivors of stroke – the framingham study,” New
Engl. J. Med., 293, 954-956 (1975).
2. H. Feys, J. Van Hees, F. Bruyninckx, et al., “Value of
somatosensory and motor evoked potentials in predicting arm
recovery after a stroke,” J. Neurol., Neurosurg., Psychiat., 68,
323-331 (2000).
3. P. Tzvetanov, R. T. Rousseff, and P. Atanassova, “Prognostic
value of median and tibial somatosensory evoked potentials
in acute stroke,” Neurosci. Lett., 380, 99-104 (2005).
4. P. Tzvetanov and R.T. Rousseff, “Predictive value of median-
SSEP in early phase of stroke: A comparison in supratentorial
infarction and hemorrhage,” Clin. Neurol. Neurosurg., 107,
475-481 (2005).
5. Y. Hara, Y. Masakado, and N. Chino, “The physiological
functional loss of single thenar motor units in the stroke
patients: When does it occur? Does it progress?” Clin.
Neurophysiol., 115, 97-103 (2004).
6. M. Lukacs, “Electrophysiological signs of changes in motor
units after ischaemic stroke,” Clin. Neurophysiol., 116, 1566-
1570 (2005).
7. H. Y. Jung, B. K. Park, H. S. Shin, et al., “Development of the
Korean version of modified Barthel index (K-MBI): Multi-
center study for subjects with stroke,” J. Korean Acad.
Rehabil. Med., 27, 283-297 (2003).
8. C. Collin and D. Wade, “Assessing motor impairment after
stroke: A pilot reliability study,” J. Neurol., Neurosurg.,
Psychiat., 53, 576-579 (1990).
9. M. R. Caccia, E. Ubiali, and F. Schieroni, “Axonal excitability
and motor propagation velocity of peripheral nerves in
patients with acute vascular lesions of the brain,” J. Neurol.,
Neurosurg., Psychiat., 39, 900-904 (1976).
10. Y. Hara, K. Akaboshi, Y. Masakado, et al., “Physiologic
decrease of single thenar motor units in the F-response in
stroke patients,” Arch. Phys. Med. Rehabil., 81, 418-423
NEUROPHYSIOLOGY / НЕЙРОФИЗИОЛОГИЯ.—2015.—T. 47, № 2 187
PROGNOSTIC VALUE OF ELECTROPHYSIOLOGICAL PARAMETERS FOR THE RECOVERY
(2000).
11. A. J. McComas, “Invited review: Motor unit estimation:
Methods, results, and present status,” Muscle Nerve, 14, 585-
597 (1991).
12. A. J. McComas, R. E. Sica, A. R. Upton, et al., “Functional
changes in motoneurones of hemiparetic patients,” J. Neurol.,
Neurosurg., Psychiat., 36, 183-193 (1973).
13. A. S. Ryan, C. L. Dobrovolny, G. V. Smith, et al., “Hemiparetic
muscle atrophy and increased intramuscular fat in stroke
patients,” Arch. Phys. Med. Rehabil., 83, 1703-1707 (2002).
14. S. Landin, L. Hagenfeldt, B. Saltin, et al.,” Muscle metabolism
during exercise in hemiparetic patients,” Clin. Sci. Mol. Med.,
53, 257-269 (1977).
15. R. Benecke, A. Berthold, and B. Conrad, “Denervation activity
in the EMG of patients with upper motor neuron lesions: Time
course, local distribution and pathogenetic aspects,” J. Neurol.,
230, 43-151 (1983).
16. A. Kondo, H. Nagara, and J. Tateishi, “A morphometric study
of myelinated fibers in the fifth lumbar ventral roots in patients
with cerebrovascular diseases,” Clin. Neuropathol., 6, 250-256
(1987).
17. A. A. van Kuijk, J. W. Pasman, H. T. Hendricks, et al.,
“Supratentorial ischemic stroke: More than an upper motor
neuron disorder,” J. Clin. Neurophysiol., 24, 450-455 (2007).
18. R. J. Prescott, W. M. Garraway, and A. J. Akhtar, “Predicting
functional outcome following acute stroke using a standard
clinical examination,” Stroke, 13, 641-647 (1982).
19. D. T. Wade, R. Langton-Hewer, V. A. Wood, et al., “The
hemiplegic arm after stroke: Measurement and recovery,” J.
Neurol., Neurosurg., Psychiat., 46, 521-524 (1983).
20. E. Chroni, A. A. Argyriou, G. Katsoulas, et al., “Ulnar F wave
generation assessed within 3 days after the onset of stroke in
patients with relatively preserved level of consciousness,”
Clin. Neurol., Neurosurg., 109, 27-31 (2007).
21. E. Chroni, G. Katsoulas, A. A. Argyriou, et al., “Level of
consciousness as a conditioning factor of F wave generation
in stroke patients,” Clin. Neurophysiol., 117, 315-319 (2006).
22. D. Dumitru, A. A. Amato, and M. J. Zwarts, “Peripheral nervous
system’s reaction to injury,” in: Electrodiagnostic Medicine,
D. Dumitru and M. J. Zwarts (eds.), Hanly & Belfus,
Philadelphia (2002), p. 125.
23. M. Paoloni, B. Volpe, M. Mangone, et al., “Peripheral nerve
conduction abnormalities in nonparetic side of ischemic stroke
patients,” J. Clin. Neurophysiol., 27, 48-51 (2010).
24. K. H. Chiappa, “Short-latency somatosensory evoked
potentials: Methodology,” in: Evoked Potentials in Clinical
Medicine, Philadelphia (1997), pp. 283-339.
25. B. Fierro, V. La Bua, M. Oliveri, et al., “Prognostic value of
somatosensory evoked potentials in stroke,” Electromyogr.
Clin. Neurophysiol., 39, 155-160 (1999).
26. O. Keren, H. Ring, P. Solzi, et al., “Upper limb somatosensory
evoked potentials as a predictor of rehabilitation progress in
dominant hemisphere stroke patients,” Stroke, 24, 1789-1793
(1993).
|