Roles Of Cell Compartments in the Variation of Firing Patterns Generated by Reduced Pacemaker Models of the Crustacean Stomatogastric Ganglion
Endogenous bursters in central pattern generators (CPGs) generate rhythmic firing patterns controlling regular movements in the organism. Based on a pacemaker kernel model of the stomatogastric ganglion (SGG) of crustaceans, we constructed three reduced models, (i) dendrite-reduced model (DRM), (...
Збережено в:
Дата: | 2016 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут фізіології ім. О.О. Богомольця НАН України
2016
|
Назва видання: | Нейрофизиология |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/148338 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Roles of Cell Compartments in the Variation of Firing Patterns Generated by Reduced Pacemaker Models of the Crustacean Stomatogastric Ganglion / W.J. Ye, Sh.Q. Liu // Нейрофизиология. — 2016. — Т. 48, № 2. — С. 87-95. — Бібліогр.: 22 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-148338 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1483382019-02-19T01:25:19Z Roles Of Cell Compartments in the Variation of Firing Patterns Generated by Reduced Pacemaker Models of the Crustacean Stomatogastric Ganglion Ye, W.J. Liu, Sh.Q. Endogenous bursters in central pattern generators (CPGs) generate rhythmic firing patterns controlling regular movements in the organism. Based on a pacemaker kernel model of the stomatogastric ganglion (SGG) of crustaceans, we constructed three reduced models, (i) dendrite-reduced model (DRM), (ii) axon-reduced model (ARM), and (iii) primary neuritereduced model (PNRM). Similar firing patterns were observed in two models except the axonreduced one. Perturbing of various parameters in the models induced bifurcation phenomena in the occurrence of interspike intervals (ISIs), which depicted variation of the firing patterns. By comparing and analyzing two-dimensional parameter planes derived from the above different models, the effects of compartments on varying firing patterns were detected. In particular, a different kind of period-doubling transition mode of firing patterns, which varied via a ring-shape mode, was found. Ендогенні компоненти центральних генераторів патернів (ЦГП), відповідальні за контроль певних стандартних моторних феноменів в організмі, генерують ритмічні групи розрядів. Базуючись на ядерній моделі пейсмекерів у стоматогастричному ганглії (СГГ) ракоподібних, ми сконструювали три редуковані моделі – модель з редукованими дендритами (ДРМ), модель з редукованим аксоном (АРМ) та модель з редукованим первинним нейритом (ПНРМ). У двох моделях, за виключенням АРМ, спостерігались однакові патерни розрядів. Змини різних параметрів моделей призводили до появи біфуркаційних феноменів у послідовностях міжімпульсних інтервалів, що віддзеркалювалось у варіаціях патернів розрядів. У перебігу порівняння двовимірних площин параметрів, отриманих для різних моделей, вдалось ідентифікувати впливи компартментів на варіацію параметрів розрядів. Зокрема, було встановлено специфічний вид перехідного режиму подвоєння періоду в патернах, варіації якого мали кільцеподібний характер. 2016 Article Roles of Cell Compartments in the Variation of Firing Patterns Generated by Reduced Pacemaker Models of the Crustacean Stomatogastric Ganglion / W.J. Ye, Sh.Q. Liu // Нейрофизиология. — 2016. — Т. 48, № 2. — С. 87-95. — Бібліогр.: 22 назв. — англ. 0028-2561 http://dspace.nbuv.gov.ua/handle/123456789/148338 577.352:519.8 en Нейрофизиология Інститут фізіології ім. О.О. Богомольця НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Endogenous bursters in central pattern generators (CPGs) generate rhythmic firing patterns
controlling regular movements in the organism. Based on a pacemaker kernel model of the
stomatogastric ganglion (SGG) of crustaceans, we constructed three reduced models, (i)
dendrite-reduced model (DRM), (ii) axon-reduced model (ARM), and (iii) primary neuritereduced model (PNRM). Similar firing patterns were observed in two models except the axonreduced one. Perturbing of various parameters in the models induced bifurcation phenomena
in the occurrence of interspike intervals (ISIs), which depicted variation of the firing patterns.
By comparing and analyzing two-dimensional parameter planes derived from the above
different models, the effects of compartments on varying firing patterns were detected. In
particular, a different kind of period-doubling transition mode of firing patterns, which varied
via a ring-shape mode, was found. |
format |
Article |
author |
Ye, W.J. Liu, Sh.Q. |
spellingShingle |
Ye, W.J. Liu, Sh.Q. Roles Of Cell Compartments in the Variation of Firing Patterns Generated by Reduced Pacemaker Models of the Crustacean Stomatogastric Ganglion Нейрофизиология |
author_facet |
Ye, W.J. Liu, Sh.Q. |
author_sort |
Ye, W.J. |
title |
Roles Of Cell Compartments in the Variation of Firing Patterns Generated by Reduced Pacemaker Models of the Crustacean Stomatogastric Ganglion |
title_short |
Roles Of Cell Compartments in the Variation of Firing Patterns Generated by Reduced Pacemaker Models of the Crustacean Stomatogastric Ganglion |
title_full |
Roles Of Cell Compartments in the Variation of Firing Patterns Generated by Reduced Pacemaker Models of the Crustacean Stomatogastric Ganglion |
title_fullStr |
Roles Of Cell Compartments in the Variation of Firing Patterns Generated by Reduced Pacemaker Models of the Crustacean Stomatogastric Ganglion |
title_full_unstemmed |
Roles Of Cell Compartments in the Variation of Firing Patterns Generated by Reduced Pacemaker Models of the Crustacean Stomatogastric Ganglion |
title_sort |
roles of cell compartments in the variation of firing patterns generated by reduced pacemaker models of the crustacean stomatogastric ganglion |
publisher |
Інститут фізіології ім. О.О. Богомольця НАН України |
publishDate |
2016 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/148338 |
citation_txt |
Roles of Cell Compartments in the Variation of Firing Patterns Generated by Reduced Pacemaker Models of the Crustacean Stomatogastric Ganglion / W.J. Ye, Sh.Q. Liu // Нейрофизиология. — 2016. — Т. 48, № 2. — С. 87-95. — Бібліогр.: 22 назв. — англ. |
series |
Нейрофизиология |
work_keys_str_mv |
AT yewj rolesofcellcompartmentsinthevariationoffiringpatternsgeneratedbyreducedpacemakermodelsofthecrustaceanstomatogastricganglion AT liushq rolesofcellcompartmentsinthevariationoffiringpatternsgeneratedbyreducedpacemakermodelsofthecrustaceanstomatogastricganglion |
first_indexed |
2025-07-12T18:45:30Z |
last_indexed |
2025-07-12T18:45:30Z |
_version_ |
1837467897826377728 |
fulltext |
NEUROPHYSIOLOGY / НЕЙРОФИЗИОЛОГИЯ.—2016.—T. 48, № 2 87
UDC 577.352:519.8
W. J. YE1 and Sh. Q. LIU1
ROLES OF CELL COMPARTMENTS IN THE VARIATION OF FIRING PATTERNS
GENERATED BY REDUCED PACEMAKER MODELS OF THE CRUSTACEAN
STOMATOGASTRIC GANGLION
Received June 18, 2014
Endogenous bursters in central pattern generators (CPGs) generate rhythmic firing patterns
controlling regular movements in the organism. Based on a pacemaker kernel model of the
stomatogastric ganglion (SGG) of crustaceans, we constructed three reduced models, (i)
dendrite-reduced model (DRM), (ii) axon-reduced model (ARM), and (iii) primary neurite-
reduced model (PNRM). Similar firing patterns were observed in two models except the axon-
reduced one. Perturbing of various parameters in the models induced bifurcation phenomena
in the occurrence of interspike intervals (ISIs), which depicted variation of the firing patterns.
By comparing and analyzing two-dimensional parameter planes derived from the above
different models, the effects of compartments on varying firing patterns were detected. In
particular, a different kind of period-doubling transition mode of firing patterns, which varied
via a ring-shape mode, was found.
Keywords: endogenous bursters, central pattern generator, interspike intervals,
pacemaker kernel model, reduced model, cell compartments.
1 School of Mathematics, South China University of Technology, Guangzhou,
China.
Correspondence should be addressed to: Sh. Q. Liu
(e-mail: mashqliu@scut.edu.cn).
INTRODUCTION
Endogenously bursting neurons play an important role
in generating rhythmic patterned outputs of central
pattern generators (CPGs) [1-6]. This kind of neurons
has been discovered in a great number of organisms.
The R15 neuron in Aplysia and the pacemaker kernel
of the pyloric circuit of the stomatogastric ganglion
(SGG) in crustaceans can serve as examples of such
generators [7, 8].
Endogenous bursters in crustaceans show at least
two kinds of firing patterns; these are a tonic spiking
pattern and a bursting pattern [9]. Major attention
in a number of studies has been focused on the
mechanism by which firing patterns vary between the
regular spiking and bursting modes; the respective
shifts are related to the corresponding changes in the
behavioral patterns [10]. This mechanism appeared
to be influenced by some ion channels, in including
sodium, calcium, and potassium ones; activation or
blocking of these channels experimentally makes the
neurons to exhibit different firing patterns in an SGG
anterior burster neuron [11, 12]. Actually, the shape
of bursts may change as a result of alteration of the
parameters of ion channels, such as the conductance
and equilibrium potential. Golowasch et al. [13]
compared the model and biological neurons, in order
to study the contribution of ion channels to the firing
patterns. As a result, the authors found that variation
of a few conductances induces a lateral pyloric neuron
to move from one mode to another by perturbing the
parameters in the examined cell unit. Furthermore,
regulation of the synaptic strength can also induce
different dynamic responses and alter the intrinsic
period of fluctuation of the membrane potential. A
phase response curve (PRC) was used to characterize
the variation of the firing mode after applying
inhibitory and excitatory synaptic conductance pulses
[14, 15].
In order to understand the role of the cell
compartments in varying the firing patterns, we
constructed three reduced models based on the
pacemaker kernel model proposed by Maran et al.
[15]. In these compartmental models, we treated
the compartment as a whole to find some common
characters, no matter what ion channels it had. The
index of interspike intervals (ISIs) was utilized to
NEUROPHYSIOLOGY / НЕЙРОФИЗИОЛОГИЯ.—2016.—T. 48, № 288
W. J. YE and Sh. Q. LIU
describe variations of the firing patterns. In some
experimental results, variations of ISIs have been
found to be a good match with the modeling results
[16-18]. Thus, comparison of ISI bifurcation diagrams
between the derived models and the original model
will provide insight into the mechanism responsible for
the variation of firing patterns. In addition, the spike-
counting method has been used to detect distributions
of the firing patterns within a two-dimensional
parameter plane [19, 20]. A comparison of these planes
will provide a comprehensive way to understand the
effect of compartments on the transition modes of the
firing patterns.
DESCRIPTION OF THE
COMPARTMENTAL MODELS
Based on the model introduced by Maran et al. [15],
we constructed three reduced models by removing
different cell compartments. As the dendrite has been
removed, we refer this reduced model as a “dendrite-
reduced model” (DRM). Similarly, the other two
reduced models were named a “primary neurite-
reduced model” (PNRM) and an “axon-reduced
model} (ARM) (Fig. 1).
The intact model is described by the following
Hodgkin-Huxley-type equations.
Cm,sdVs/dt = –(Ileak+Gspn(Vs–Vpn))
Cm,pndVpn/dt = –(IKs+Ileak+Gspn(Vpn–Vs)+Gdpn(Vpn–
–Vd)+Gapn(Vpn–Va))
Cm,ddVd/dt = –(IKCa+ICa+IA+IKf+Ileak+Gdpn(Vd–Vpn))
Cm,adVa/dt = Iext–(INa+IKdr+Ileak+Gdpn(Va–Vpn))
Here, Vs, Vpn, Vd, and Va represent the membrane
potentials in the soma, primary neurite, dendrite, and
axon, respectively. The currents through each ion
channel follow the equations presented below.
INa = gnam3h(V–Ena),dm/dt = am(1–m)–bmm, dh/dt =
= 0.8ah(1–h)–bhh
am = (0.121V+2.871)/(1–exp(–0.121V – 2.871)),
bm= 4exp(–2.984–0.0672V)
ah = 0.07exp(–2.686–0.0605V),
bh = 1/(1+exp(–2.371–0.121V))
Leak
Soma Primary
Dendrite
Axon Axon
Somaneurite
LeakKs
A B
DC
Ca
Na
Kf
Ca Ca
Ks
Ks
Leak KCa
Leak
Leak
Leak
Leak
Leak
Leak
Leak
Leak
Leak
Leak
KCa KCaKf Kf
AA
A
Na
Na Kdr
KdrKdr
Primary
neurite
Dendrite
Soma
Axon
Dendrite
Primary
neurite
Soma
F i g. 1. Structure and ion channels of the intact model (A) and three reduced models (B-D).
Р и с. 1. Структура інтактної моделі (A) та трьох редукованих моделей (B-D), а також присутні в них іонні канали.
NEUROPHYSIOLOGY / НЕЙРОФИЗИОЛОГИЯ.—2016.—T. 48, № 2 89
ROLES OF CELL COMPARTMENTS IN THE VARIATION OF FIRING PATTERNS
The derived models could be obtained by reducing
the corresponding compartment. Most respective
parameters are shown in Table 1. The compartmental
models are programmed in Python, using a fourth-
order Runge-Kutta method. All diagrams are drawn by
an open-source library named Matplotlib (Python).
IKdr = gKdrn3(V – EK),dn/dt = 0.8an(1 – n) – bnn,bn =
= 0.125exp(–0.421 – 0.0151V)
an = (0.0121V + 0.237)/(1 – exp(–2.429 – 0.121V))
IKCa = gKCa(c/(0.5+c))(V – EK), dc/dt =
= ρ(0.0078*z(ECa – V)/(1 + 2c) – c)
ICa = gCa(z/(0.43 + c))(V – ECa), dz/dt = (zv – z)/23,
zv = 1/(1 + exp(–0.15(V+50)))
IA = gAmA
3hA(V – EK), mA = 1/(1 + exp(–(V + 12)/26)),
dhA/dt = hAi – hA
hAi = 1/(1 + exp((V + 62)/6))
IKs = gKs p(V – EK), dp/dt = (pv – p)/τp, pv = 1/(1 +
+ exp(–2(V+45)))
τp = 100 + 3000/(1 + exp(–(V + 50)/0.05))
IKf = gKfb(V – EK), db/dt = bv – b, bv = 1/(1 +
+ exp(–2(V + 42)))
ILeak = gL(V – EL)
RESULTS
Comparison of the Firing Patterns and PRC in
Different Models. While reducing some compartments
T a b l e 1. Parameters in the Models
Т а б л и ц я 5. Параметри моделей
Parameter Value Parameter Value Parameter Value Parameter Value Parameter Value
Iext (nA) 0.2 с (msec–1) 0.0016 sa (mV) –26 gNa (µS) 15.0 Gspn (µS) 0.05
ENa (mV) 30 KA (msec–1) 1 sb (mV) 6 gCa (µS) 0.04 Gapn (µS) 0.5
ECa (mV) 140 фz (msec) 23 gL,d (µS) 0.0334 gKs (µS) 0.065 Gdpn (µS) 0.04
EK (mV) –75 фb (msec) 1 gL,pn (µS) 0.001 gKf (µS) 0.07 Gsd (µS) 0.2
EL (mV) –40 zb (mV) –50 gL,d (µS) 0.001 gKCa (µS) 0.273 Gsa (µS) 0.8
лn (msec-1) 0.8 va (mV) –12 gL,d (µS) 0.001 gA (µS) 100
лh (msec-1) 0.8 vb (mV) –62 gKdr (µS) 8.0 Cm (nF) 1.0
IM
Spiking
Bursting
Chaos
Iext= 0.38 nA 0.47 nA
0.31 nA
0.288 nA
0.33 nA
0.32 nA
4 m
V
3 m
V
8 m
V
2 m
V
2 sec2 sec2 sec2 sec
–0.15 –0.5
–0.05
0
0 0 00.2 0.2 0.20.4 0.4 0.40.6 0.6 0.60.8 0.8 0.81.0 1.0 1.0
0.05
0.5
1.72 nA 1.5 nA
1.68 nA 0.5 nA
1.67 nA 0.1 nA
DRM
A
1 2 3
B
PNRM ARM
–1.0
0
1.0
F i g. 2. Comparison of the ISIs bifurcation diagrams among three models.
Р и с. 2. Порівняння діаграм біфуркації міжпікових інтервалів, характерних для трьох моделей.
NEUROPHYSIOLOGY / НЕЙРОФИЗИОЛОГИЯ.—2016.—T. 48, № 290
W. J. YE and Sh. Q. LIU
from the intact model, the derived models may
produce different firing patterns. The response of the
reduced models could be studied by applying distinct
external stimuli. Figure 3A shows the results of such
simulations. At a high level of Iext, tonic spiking
patterns similar to those in the IM were observed in
both DRM and PNRM. However, the ARM responded
to the stimulus with seven spikes, which tended to be
resting other than a series of spikes. It even maintained
the resting pattern as the strength of Iext decreased,
while the other three models demonstrated dynamic
responses characterized by bursting and chaotic
bursting modes.
Maran et al. [15] reported that there were six kinds
of phase-resetting curve (PRC) in the stomatogastric
ganglion pacemaker neuron, observed with increases
in the synaptic conductance, strength, and duration
of the stimuli. In contrast to these curves, however,
the PRC in our reduced models only revealed the
bilinear mode, no matter what were the magnitude of
the synaptic conductance, strength, and duration of the
stimulus (Fig. 2B).
Differences of the Transition Modes of Firing
Patterns between the Intact Model and Reduced
Models. The differences between the intact model
and reduced models in the transition modes of firing
patterns could provide an insight into the role of model
compartments. We use the index of interspike intervals
(ISIs) to depict the variation of firing patterns.
Figure 3 illustrates the ISI bifurcation diagrams;
ISIs are plotted vs. the Iext, capacitance of the soma
(Cm,s), and equilibrium potential of delayed-rectifier
potassium channels EKdr, respectively. Firstly, we
compare the PNRM and IM. When Iext varied between
1.675 to 1.70 nA in the PNRM, the ISIs demonstrated
period-doubling bifurcation, namely bifurcating
from one period to four periods. This phenomenon is
rather similar to bifurcation modes in the IM when
Iext decreased from 0.40 to 0.37 nA. With values
smaller than this range, the PNRM, however, does
IMmsec msec msec
200
0.32 0.34 0.36 0.38 0.40 1.60 0.1 0.2 0.3 0.4 0.51.62 1.64 1.66 1.68 1.70nA nA nA
400
600
800
PNRM DRM
A
B
C
200 200
400 400
600 600
800 800
1000 1000
1200 1200
200200
400
600
800
1000
400
600
800
1000
1200
200
400
600
800
1000
0 0.5 1.0 0 1.0 1.0 2.0 3.02.0 3.0 nF 0nF nF
200
0
400
600
800
1000
–70 –80 –78–66 –70 –74–62 –60 –70–58 –50 –66mV mV mV
200
0
400
600
800
200
400
600
800
1000
F i g. 3. ISI bifurcation diagrams plotted vs. the external current Iext, capacitance of the soma Cm,s, and equilibrium potential of
delayed-rectifier potassium channels EKdr (A–C, respectively).
Р и с. 3. Біфуркаційні діаграми залежностей міжпікових інтервалів від Iext, Cm,s та EKdr (A–C відповідно).
NEUROPHYSIOLOGY / НЕЙРОФИЗИОЛОГИЯ.—2016.—T. 48, № 2 91
ROLES OF CELL COMPARTMENTS IN THE VARIATION OF FIRING PATTERNS
F i g. 4. Distribution of different firing patterns in two-dimensional
parameter planes (Gapn, Gspn). A and B) are derived from the IM and
DRM, respectively.
Р и с. 4. Розподілення різних патернів розряду на двовимірних
площинах параметрів (Gapn, Gspn).
0
00
0
0.3
0.3
0.10
0.10
1.35Gapn (μS)
Gapn (μS)
G
sp
n
(μ
S
)
G
sp
n
(μ
S
)
1.35
4
5
8
10
12
15
16
20
20
25
24
30
28
35
32
40
36
A
A
B
B
0
0%
79.30%
20.70%
0.98%
67.70%
32.22%
1 12
IM DRM
23 3
20
40
60
80
100
%
F i g. 5. Percentages of different firing patterns in the parameter
planes of Fig. 4. 1-3) Columns correspond to the resting state,
periodic firing, and chaotic firing, respectively.
Р и с. 5. Нормовані частки різних параметрів розряду на пло-
щи нах параметрів (дані рис. 4).
not continue the bifurcating pattern but maintains the
bursting firing pattern with ISIs in three periods, while
the IM continues bifurcating and shows a firing mode
of chaotic bursting (Fig. 3A). When Cm,s increases,
ISIs in the PNRM vary according to a period-adding
bifurcation other than period-doubling bifurcation
in the IM. In this process, the PNRM does not
demonstrate the chaotic bursting response (Fig. 3B).
In Fig. 3C, the difference between the two diagrams is
the number of bifurcations.
msec
0 0.05 0.10 0.15 0.20 0.25 0.30
μS
200
200
0
0
400
400
600
600
800
800
1000
1200
1000
A
B
F i g. 6. Bifurcation diagrams of ISIs when Gapn = 0.2875 µS. A and
B) are derived from the IM and DRM respectively. Abscissa) Values
of Gspn, µS.
Р и с. 6. Діаграми біфуркацій міжпікових інтервалів при зна-
ченні Gapn = 0.2875 мкСм.
NEUROPHYSIOLOGY / НЕЙРОФИЗИОЛОГИЯ.—2016.—T. 48, № 292
W. J. YE and Sh. Q. LIU
Then we focused our attention on the differences
between the DRM and IM. The bifurcation modes of
ISIs in these two models are also rather similar, but the
DRM possesses a unique feature; this is the existence
of a chaotic region. With parameter ranges 0.08 nA <
< Iext < 0.18 nA (Fig. 3A), 3.0 nF < Cm,s < 3.5 nF
(Fig. 3B), and –73.0 mV < EKdr < –68.5 mV (Fig. 3C),
such a chaotic region is present in all diagrams. These
regions that appear suddenly do not follow the trend
visible before, and they arrive irregularly. Once
beyond these regions, the bifurcation phenomenon
became normal.
Two-Dimensional Parameter-Plane Analysis.
Comparison between the IM and DRM. In this section,
we analyze the transition of the firing patterns in a
two-dimensional parameter plane plotted by a spike-
counting method. As we can see in Fig. 4, these two
planes are plotted on a 500×500 grid of the parameters
(Gapn, Gspn), which means that 25×104 simulations
have been applied. In the process of simulation, the
control parameter was increased from 0.1 to 1.35 in
steps of 0.0025 µS for the Gapn or, within the interval
from 0.0 to 0.3, in steps of 0.0006 µS for the Gspn.
At each parameter step, we excluded a 10000 msec-
long segment to make sure that the system approaches
a stable state. In the color bars at the right side of
each diagram, zero corresponds to resting firing, the
maximum of the color bar represents chaotic firing,
and the other number is the period of periodic firing. In
these diagrams, we can observe a number of periodic
regions immersed in chaotic structures. Both Fig. 4A
and Fig. 4B exhibit the comb-shaped chaotic regions,
which can also be seen in some single-compartment
neuron-related models, such as a Hindmarsh-Rose
model and that of the pancreatic β-cell [19, 21].
However, when comparing the A region in Fig. 4A to
the B region in Fig. 4B, we found that some chaotic
regions are converted into periodic structures after
adding the dendrite compartment. The remaining
chaotic regions are separated by distinct periodic
structures and appear as some isolated islands. As a
result, there is 11.52% less chaotic regions in the IM
than those in the DRM (Fig. 5). If we fix the Gapn to
0.2875 µS and increase only Gspn in these two models,
two types of bifurcation diagrams are obtained by
computing the ISIs (Fig. 6). The differences between
such two-parameter planes are more obvious in these
bifurcation diagrams. In Fig. 6A, the ISIs exhibit a
period-doubling cascade first and then revert to chaos,
turning into a wide range of periodic motions, and
finally become chaotic motion via another period-
doubling cascade. It should be mentioned that only a
continuous period-doubling cascade leading to chaos
can be observed in the DRM.
Comparison between the IM and PNRM. Having es-
timated the effect of the dendrite compartment on the
transition of firing patterns, we focused on the dif-
ferences between the IM and PNRM. Similarly, two-
parameter planes plotted by a spike-counting method
(gKCa and EK, A) have been used to distinguish different
distributions of the firing patterns (Fig. 7). Although
both Fig. 7A and Fig. 7B exhibit some periodic re-
gions immersed in chaotic structures, the variation of
the firing patterns in the IM is much more compli-
0
00.150
0.159
0.340
0.275
–82.0
–79.0
–72.0EK, A (mV)
EK, A (mV)
g K
C
a
(μ
S
)
g K
C
a
(μ
S
)
–55.03
6
4
12
8
18
12
24
16
30
20
36
24
42
28
48
A
A
B
B
F i g. 7. Distribution of different firing patterns in two-dimensional
parameter planes (gKCa, EK, A). A and B) are derived from the IM and
PNRM, respectively.
Р и с. 7. Розподілення різних патернів розряду відповідно до
двовимірних площин параметрів (gKCa, EK, A).
NEUROPHYSIOLOGY / НЕЙРОФИЗИОЛОГИЯ.—2016.—T. 48, № 2 93
ROLES OF CELL COMPARTMENTS IN THE VARIATION OF FIRING PATTERNS
cated. Firstly, the IM demonstrated a greater propor-
tion of chaotic regions (Fig. 8) and possessed more
“teeth” of the comb-shaped chaotic regions, divid-
ing the plane into different periodic regions. The larg-
est period of the periodic regions is 51, while in the
PNRM the respective value is 30. Secondly, the re-
gion A in Fig. 7A exhibits some interesting properties
of the IM that did not appear in the PNRM. The peri-
od-doubling bifurcations in this region are not accom-
panied by chaotic firing patterns, but they turn into
other periodic firing modes. To understand how the
firing patterns vary, we let the points walk along the
straight line (EK, A = –0.2227 and gKCa – 16.1579) and
computed the ISIs. In Fig. 9, we find that the transi-
tion pattern of ISIs within this region demonstrates a
ring-shaped mode. As the gKCa decreases from 0.220 to
0.167 µS, the ISIs firstly exhibit a period-doubling bi-
furcation, and then an inverse period-doubling bifur-
cation is induced, thus forming a ring. In this process,
period-doubling bifurcations do not induce a chaotic
pattern. The periods of region A from up to down are
organized as 10→20→11→22→12→24→13→26→
→ 14→28→15→30→16→32, i.e., this sequence is
of the form …→n→2n→n+1→2(n+1)→n+2→2(n+2)
…. This kind of transition pattern is rather different
from the patterns in Fig. 4 and does not appear in the
PNRM.
DISCUSSION
Based on the SGG pacemaker neuron model, we
constructed three reduced models of such a neuron.
In these three models, the dendrite, axon, and
primary neurite were removed from the original
model, respectively. By comparing firing patterns and
bifurcation modes between reduced models and the
original model, we could gain an insight into the effect
of compartment variation on the firing patterns.
Except for the ARM, the other two derived models
could produce firing patterns rather similar to that
produced by the IM, including tonic spiking, bursting,
and chaotic bursting. The dynamic response of the
ARM tended to be resting, no matter how intense
the external stimulus was. This implies that the axon
corresponds to the origin of the action potential. In
the absence of the axon, the basic firing could not
be obtained. Actually, this is reasonable for us to
believe that this inference for the ion channels in
the axon is the same as that in the Hodgkin-Huxley
0
0%
74.48%
25.52%
31.81%
65.73%
2.46%
1 12
IM PNRM
23 3
20
40
60
80
100
%
F i g. 8. Percentage of different firing patterns in the parameter
planes of Fig. 7. 1-3) Columns correspond to resting, periodic, and
chaotic firing, respectively.
Р и с. 8. Нормовані частки різних параметрів розряду відповідно
до площин параметрів на рис. 7.
msec
0
0
0.17
0.17
0.18
0.18
0.19
0.19
0.20
0.20
0.21
0.21
0.22
0.22
μS
μS
100
50
0
40
200
60
300
70
400
80
500
600
A
B
F i g. 9. Bifurcation diagram of ISIs when the point walks along the
following straight line: EK, A = –0.2227, gKCa–16.1579. B) is a chart
of the subregion 1 in A.
Р и с. 9. Діаграми біфуркацій міжпікових інтервалів для
випадку, коли точка рухається відповідно до наступної прямої
лінії: EK, A = –0.2227, gKCa–16.1579.
NEUROPHYSIOLOGY / НЕЙРОФИЗИОЛОГИЯ.—2016.—T. 48, № 294
W. J. YE and Sh. Q. LIU
model, although the parameters of these channels
are not exactly the same [22]. The PRC of the other
two reduced models is of a bilinear type, while the
IM has six kinds of PRC obtained by varying the
synaptic conductance and duration [15]. The reason
why reduced models are not sensitive to values of
the synaptic conductance and duration of action of a
synaptic input needs to be further studied.
The effect of the dendrites and primary neurite
on varying the firing patterns was characterized
by contrasting two-dimensional parameter planes
between the IM and derived models, which displays
the distribution of the firing patterns. In the absence
of the dendrites, there are about 11.52% of periodic
regions turning into chaotic regions; this indicates that
the dendrite compartment can tune the system into a
periodic state at some parameter ranges. On the other
hand, the model that includes the primary neurite
compartment demonstrates much more complicated
periodic and chaotic structures in the (gKCa and EK, A)
plane. In particular, a ring-shaped period-doubling
transition mode of firing patterns has been found.
This study was not associated with any experiments on
animals or tests involving human subjects; in view of this,
confirmation of the correspondence of the study to existing
ethical standards in this respect is not required.
The authors, W. J. Ye and Sh. Q. Liu, confirm that there
were no conflicts of any kind relating to commercial or financial
relations, relations with organizations or persons, which could
in any way be associated with the investigation, and with the
relationship of the co-authors of the article.
В. Йє1, М. Лю1
РОЛЬ КОМПАРТМЕНТІВ У ВИЗНАЧЕННІ
РІЗНИХ ПАТЕРНІВ РОЗРЯДІВ, ГЕНЕРОВАНИХ
РЕДУКОВАНИМИ МОДЕЛЯМИ ПЕЙСМЕКЕРІВ
СТОМАТОГАСТРИЧНОГО ГАНГЛІЮ РАКОПОДІБНИХ
1 Південнокитайський технологічний університет,
Гуангчжоу (Китай).
Р е з ю м е
Ендогенні компоненти центральних генераторів патернів
(ЦГП), відповідальні за контроль певних стандартних мо-
торних феноменів в організмі, генерують ритмічні групи
розрядів. Базуючись на ядерній моделі пейсмекерів у сто-
матогастричному ганглії (СГГ) ракоподібних, ми сконстру-
ювали три редуковані моделі – модель з редукованими ден-
дритами (ДРМ), модель з редукованим аксоном (АРМ) та
модель з редукованим первинним нейритом (ПНРМ). У двох
моделях, за виключенням АРМ, спостерігались однакові па-
терни розрядів. Змини різних параметрів моделей призво-
дили до появи біфуркаційних феноменів у послідовностях
міжімпульсних інтервалів, що віддзеркалювалось у варіа-
ціях патернів розрядів. У перебігу порівняння двовимірних
площин параметрів, отриманих для різних моделей, вдалось
ідентифікувати впливи компартментів на варіацію параме-
трів розрядів. Зокрема, було встановлено специфічний вид
перехідного режиму подвоєння періоду в патернах, варіації
якого мали кільцеподібний характер.
REFERENCES
1. R. Nargeot, D. A. Baxter, and J. H. Byrne, “Contingent-
dependent enhancement of rhythmic motor patterns: an in vitro
analog of operant conditioning,” J. Neurosci., 17, 8093-8105
(1997).
2. R. Nargeot, C. Petrissans, and J. Simmers, “Behavioral and in
vitro correlates of compulsive-like food seeking induced by
operant conditioning in Aplysia,” J. Neurosci., 27, 8059-8070
(2007).
3. D. K. Hartline and D. F. Russell, “Endogenous burst capability
in a neuron of the gastric mill pattern generator of the spiny
lobster Panulirus interruptus,” J. Neurobiol., 15, No. 5, 345-
364 (1984).
4. H. M. Pinsker, “Aplysia bursting neurons as endogenous
oscillators. I. Phase-response curves for pulsed inhibitory
synaptic input,” J. Neurophysiol., 40, No. 3, 527-543 (1977).
5. S. Kater and C. R. S. Kaneko, “An endogenously bursting
neuron in the gastropod mollusk, Helisoma trivolvis,” J. Comp.
Physiol., 79, No. 1, 1-14 (1972).
6. R. M. Harris-Warrick and R. E. Flamm, “Multiple mechanisms
of bursting in a conditional bursting neuron,” J. Neurosci., 7,
No. 7, 2113-2128 (1987).
7. H. A. Lechner, D. A. Baxter, J. W. Clark, and J. H. Byrne,
“Bistability and its regulation by serotonin in the endogenously
bursting neuron R15 in Aplysia,” J. Neurophysiol., 75, No. 2,
957-962 (1996).
8. S. K. Maran, F. H. Sielin, K. Demla, et al., “Responses of
a bursting pacemaker to excitation reveal spatial segregation
between bursting and spiking mechanisms,” J. Comput.
Neurosci., 31, No. 2, 419-440 (2011).
9. B. J. Norris, M. J. Coleman, and M. P. Nusbaum, “Pyloric
motor pattern modification by a newly identified projection
neuron in the crab stomatogastric nervous system,” J.
Neurophysiol., 75, No.1, 97-108 (1996).
10. E. Marder and D. Bucher, “Central pattern generators and the
control of rhythmic movements,” Current Biol., 11, No. 23,
R986-R996 (2001).
11. R. M. Harris-Warrick and R. E. Flamm, “Multiple mechanisms
of bursting in a conditional bursting neuron,” J. Neurosci., 7,
No. 7, 2113-2128 (1987).
12. J. Golowasch, L. F. Abbott, and E. Marder, “Activity-
dependent regulation of potassium currents in an identified
neuron of the stomatogastric ganglion of the crab Cancer
borealis,” J. Neurosci., 19, No. 20, RC33 (1999).
13. J. Golowasch, F. Buchholtz, I. R. Epstein, and E. Marder,
“Contribution of individual ionic currents to activity of a
NEUROPHYSIOLOGY / НЕЙРОФИЗИОЛОГИЯ.—2016.—T. 48, № 2 95
ROLES OF CELL COMPARTMENTS IN THE VARIATION OF FIRING PATTERNS
model stomatogastric ganglion neuron,” J. Neurophysiol., 67,
No. 2, 341-349 (1992).
14. A. A. Prinz, V. Thirumalai, and E. Marder, “The functional
consequences of changes in the strength and duration of
synaptic inputs to oscillatory neurons,” J. Neurosci., 23,
No. 3, 943-954 (2003).
15. S. K. Maran, F. H. Sieling, K. Demla, et al., “Responses of
a bursting pacemaker to excitation reveal spatial segregation
between bursting and spiking mechanisms,” J. Comput.
Neurosci., 31, No. 2, 419-440 (2011).
16. L. Li, H. Gu, M. Yang, et al., “A series of bifurcation scenarios
in the firing pattern transitions in an experimental neural
pacemaker,” Int. J. Bifurcat. Chaos, 14, No. 5, 1813-1817 (2004).
17. Q. Lu, H. Gu, Z. Yang, et al., “Dynamics of firing patterns,
synchronization and resonances in neuronal electrical
activities: experiments and analysis,” Acta Mech. Sin., 24,
No. 6, 593-628 (2008).
18. H. Gu, “Biological experimental observations of an unnoticed
chaos as simulated by the Hindmarsh-Rose model,” PloS One,
8, No. 12, e81759 (2013).
19. R. Barrio and A. Shilnikov, “Parameter-sweeping techniques
for temporal dynamics of neuronal systems: case study of
Hindmarsh-Rose model,” J. Math. Neurosci., 1, No. 1, 1-22
(2011).
20. I. Samengo and M. A. Montemurro, “Conversion of phase
information into a spike-count code by bursting neurons,” PloS
One, 5, No. 3, e9669 (2010).
21. E. Mosekilde, B. Lading, S. Yanchuk, et al., “Bifurcation
structure of a model of bursting pancreatic cells,” Biosystems,
63, Nos. 1/3, 3-13 (2010).
22. A. L. Hodgkin and A. F. Huxley, “A quantitative description
of membrane current and its application to conduction and
excitation in nerve,” J. Physiol., 117, No. 4, 500-544 (1952).
|