Supersymmetric Proof of the Hirzebruch-Riemann-Roch Theorem for Non-Kähler Manifolds
We present the proof of the HRR theorem for a generic complex compact manifold by evaluating the functional integral for the Witten index of the appropriate supersymmetric quantum mechanical system.
Saved in:
Date: | 2012 |
---|---|
Main Author: | Smilga, A.V. |
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2012
|
Series: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/148356 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Supersymmetric Proof of the Hirzebruch-Riemann-Roch Theorem for Non-Kähler Manifolds / A.V. Smilga // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 17 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
Dolbeault Complex on S⁴\{·} and S⁶\{·} through Supersymmetric Glasses
by: Smilga, A.V.
Published: (2011) -
Toeplitz Operators, Kähler Manifolds, and Line Bundles
by: Foth, T.
Published: (2007) -
Semistability of Principal Bundles on a Kähler Manifold with a Non-Connected Structure Group
by: Biswas, I., et al.
Published: (2014) -
Quasicomplex N=2, d=1 Supersymmetric Sigma Models
by: Ivanov, E.A., et al.
Published: (2013) -
Eigenvalue Estimates of the spinc Dirac Operator and Harmonic Forms on Kähler-Einstein Manifolds
by: Nakad, R., et al.
Published: (2015)