On a Lie Algebraic Characterization of Vector Bundles

We prove that a vector bundle π: E→M is characterized by the Lie algebra generated by all differential operators on E which are eigenvectors of the Lie derivative in the direction of the Euler vector field. Our result is of Pursell-Shanks type but it is remarkable in the sense that it is the whole f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2012
Hauptverfasser: B.A. Lecomte, P., Leuther, T., Mushengezi, E.Z.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2012
Schriftenreihe:Symmetry, Integrability and Geometry: Methods and Applications
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/148364
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:On a Lie Algebraic Characterization of Vector Bundles / P. B.A. Lecomte, T. Leuther, E.Z. Mushengezi // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 8 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:We prove that a vector bundle π: E→M is characterized by the Lie algebra generated by all differential operators on E which are eigenvectors of the Lie derivative in the direction of the Euler vector field. Our result is of Pursell-Shanks type but it is remarkable in the sense that it is the whole fibration that is characterized here. The proof relies on a theorem of [Lecomte P., J. Math. Pures Appl. (9) 60 (1981), 229-239] and inherits the same hypotheses. In particular, our characterization holds only for vector bundles of rank greater than 1.