On the Dimension of the Group of Projective Transformations of Closed Randers and Riemannian Manifolds

We construct a counterexample to Theorem 2 of [Rafie-Rad M., Rezaei B., SIGMA 7 (2011), 085, 12 pages].

Gespeichert in:
Bibliographische Detailangaben
Datum:2012
1. Verfasser: Matveev, V.S.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2012
Schriftenreihe:Symmetry, Integrability and Geometry: Methods and Applications
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/148371
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:On the Dimension of the Group of Projective Transformations of Closed Randers and Riemannian Manifolds / V.S. Matveev // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 10 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-148371
record_format dspace
spelling irk-123456789-1483712019-02-19T01:28:37Z On the Dimension of the Group of Projective Transformations of Closed Randers and Riemannian Manifolds Matveev, V.S. We construct a counterexample to Theorem 2 of [Rafie-Rad M., Rezaei B., SIGMA 7 (2011), 085, 12 pages]. 2012 Article On the Dimension of the Group of Projective Transformations of Closed Randers and Riemannian Manifolds / V.S. Matveev // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 10 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 53C60; 53B40; 53A20 DOI: http://dx.doi.org/10.3842/SIGMA.2012.007 http://dspace.nbuv.gov.ua/handle/123456789/148371 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We construct a counterexample to Theorem 2 of [Rafie-Rad M., Rezaei B., SIGMA 7 (2011), 085, 12 pages].
format Article
author Matveev, V.S.
spellingShingle Matveev, V.S.
On the Dimension of the Group of Projective Transformations of Closed Randers and Riemannian Manifolds
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Matveev, V.S.
author_sort Matveev, V.S.
title On the Dimension of the Group of Projective Transformations of Closed Randers and Riemannian Manifolds
title_short On the Dimension of the Group of Projective Transformations of Closed Randers and Riemannian Manifolds
title_full On the Dimension of the Group of Projective Transformations of Closed Randers and Riemannian Manifolds
title_fullStr On the Dimension of the Group of Projective Transformations of Closed Randers and Riemannian Manifolds
title_full_unstemmed On the Dimension of the Group of Projective Transformations of Closed Randers and Riemannian Manifolds
title_sort on the dimension of the group of projective transformations of closed randers and riemannian manifolds
publisher Інститут математики НАН України
publishDate 2012
url http://dspace.nbuv.gov.ua/handle/123456789/148371
citation_txt On the Dimension of the Group of Projective Transformations of Closed Randers and Riemannian Manifolds / V.S. Matveev // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 10 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT matveevvs onthedimensionofthegroupofprojectivetransformationsofclosedrandersandriemannianmanifolds
first_indexed 2025-07-12T19:14:41Z
last_indexed 2025-07-12T19:14:41Z
_version_ 1837469727027363840
fulltext Symmetry, Integrability and Geometry: Methods and Applications SIGMA 8 (2012), 007, 4 pages On the Dimension of the Group of Projective Transformations of Closed Randers and Riemannian Manifolds Vladimir S. MATVEEV Institute of Mathematics, Friedrich-Schiller-Universität Jena, 07737 Jena, Germany E-mail: vladimir.matveev@uni-jena.de URL: http://users.minet.uni-jena.de/~matveev/ Received January 18, 2012, in final form February 21, 2012; Published online February 23, 2012 http://dx.doi.org/10.3842/SIGMA.2012.007 Abstract. We construct a counterexample to Theorem 2 of [Rafie-Rad M., Rezaei B., SIGMA 7 (2011), 085, 12 pages]. Key words: Finsler metrics; Randers metrics; projective transformations 2010 Mathematics Subject Classification: 53C60; 53B40; 53A20 1 Introduction A Randers metric is a Finsler metric (on a manifold M) of the form F (x, ξ) = √ g(ξ, ξ) + ω(ξ), (1) where g = gij is a Riemannian metric and ω = ωi is an 1-form. The assumption that F given by (1) is indeed a Finsler metric is equivalent to the condition that the g-norm of ω is less than one. Within the whole paper we assume that all objects we consider are at least C2-smooth. Two Finsler metrics F and F̄ are projectively equivalent, if every forward-geodesic of F is a forward-geodesic of F̄ . Within our paper we will always assume that the dimension of M is at least two, since in dimension one all metrics are projectively equivalent. By a projective transformation of (M,F ) we understand a diffeomorphism a : M →M such that pullback of F is projectively equivalent to F . The group of projective transformations will be denoted by Proj(M,F ); it is a Lie group of finite dimension. In [9, Theorem 2] it was claimed that for closed connected (n ≥ 3)-dimensional Randers manifold (M,F ) of constant flag curvature dim(Proj(M,F )) = n(n+ 2) or dim(Proj(M,F )) ≤ n(n+1) 2 . The goal of the present note is to construct a counterexample to this statement: we con- struct a Riemannian manifold of constant sectional curvature such that its group of projective transformations is (n− 1)2 + 1 = n2 − 2n+ 2 dimensional. Clearly, for n > 4 we have n(n+ 1) 2 < n2 − 2n+ 2 = (n− 1)2 + 1 < (n+ 1)2 − 1 = n(n+ 2). Of course, Riemannian manifolds of constant sectional curvature are Randers manifolds of con- stant flag curvature. mailto:vladimir.matveev@uni-jena.de http://users.minet.uni-jena.de/~matveev/ http://dx.doi.org/10.3842/SIGMA.2012.007 2 V.S. Matveev 2 Example Let us first recall the group of the projective transformations of the standard sphere Sn := { (x1, x2, . . . , xn+1) ∈ Rn+1 | x21 + x22 + · · ·+ x2n+1 = 1 } (2) with the restriction of the standard Euclidean metric. For every A ∈ SLn+1, consider the diffeomorphism a : Sn → Sn, a : v 7→ Av ‖Av‖ , where Av is the product of the matrix A and v ∈ Sn viewed as a vector in Rn+1 and ‖ ·‖ denotes the standard norm in Rn+1. The diffeomorphism a clearly takes geodesics to geodesics. Indeed, the geodesics of g are great circles (the intersections of planes that go through the origin with the sphere). Since multiplication with A is a linear mapping, it takes planes to planes. Since the normalisation w 7→ w ‖w‖ takes punctured planes to their intersections with the sphere, a takes great circles to great circles. Thus, a takes geodesic to geodesic. It is wellknown (essentially, since the time of Beltrami [2], see also [5]), that all projective transformations of the sphere can be constructed by this procedure. Clearly, two matrices A and A′ ∈ SLn+1 generate the same projective transformation if and only if A′ = ±A (of course, A and −A can simultaneosly lie in SLn+1 only if n is odd). Let us now construct a quotient of the standard sphere modulo a (finite, freely acting) subgroup of the isometry group, such that the group of projective transformations of this quotient has dimension n2 − 2n+ 2. Take n ≥ 2 and consider the orthogonal transformation of Rn+1 whose matrix B ∈ On+1 is blockdiagonal such that the first 2× 2-block equals ( 0 1 −1 0 ) and the second (n− 1)× (n− 1)- dimensional block equals −id = diag(−1, . . . ,−1): B =  0 1 −1 0 −1 −1 . . . −1  . The restriction of this orthogonal transformation to the sphere will be denoted by b. Clearly, b : Sn → Sn is an involution with no fixed points preserving the metric of the sphere. Consider now the subgroup (isomorphic to Z2) of the isometry group of the sphere generated by the isometry b, and the quotient M := Sn/Z2 with the induced metric which we denote by g. Let us now show that the group of the projective transformations of (M, g) has dimension n2 − 2n+ 2. We first construct a (n2−2n+ 2)-dimensional subgroup of Proj(M, g). For every A ∈ SLn+1 such the matrix of A is blockdiagonal such that the first 2 × 2-block has the form ( α β −β α ) , where α, β ∈ R with α2 + β2 > 0, and the second (n − 1) × (n − 1)-dimensional block is an On the Dimension of the Group of Projective Transformations 3 arbitrary matrix à with determinant 1 α2+β2 , A =  α β 0 · · · 0 −β α 0 · · · 0 0 0 ... ... à 0 0  . (3) For every such a matrix A, let us consider the projective transformations a of Sn given by (2). Since the matrices A and B commute, the projective transformation a commutes with the isometry b and induces a projective transformation of M . Clearly, two matrices A and A′ of the form (3) generate the same projective transformation of M if and only if A′ ∈ {A,−A,BA,−BA}. We denote the group of such projective transformations by Proj′; we evi- dently have dim(Proj′) = dim(GLn−1)− 1 + 2 = (n− 1)2 − 1 + 2 = n2 − 2n+ 2. Let us show that the group Proj′ contains (and therefore, since it is connected, coincides with) Proj0(M, g), where Proj0(M, g) denotes the connected component of the group of projective transformations of (M, g) containing the neutral element. Indeed, every element Proj0(M, g) from a small neighborhood of the neutral element lies in a certain one-parametric subgroup of Proj0(M, g). Now, one-parametric subgroups of Proj0(M, g) are in one-to-one correspondence with projective vector fields. Since the property of a vector field to be projective is a local property, the lift of every projective vector field to Sn is projective w.r.t. the standard metric on Sn, so it generates a 1-parameter group of projective transformations on Sn which we denote by aτ . As we recalled above, for every projective trans- formation of Sn there exists a matrix A such that a(x) = Ax ‖Ax‖ . We denote by τ A ∈ SLn+1 the matrix such that aτ (x) = τ Ax ‖ τ Ax‖ . Since the flow of such projective vector field on Sn evidently commutes with the action of Z2 generated by b, for any τ the transformation aτ commutes with b. Then, the matrices τ A and B also commute: B τ A− τ AB = 0. It is an easy exercise in a linear algebra to show that if a matrix A ∈ SLn+1 commutes with B, then it has the form (3). Thus, any projective transformation of (M, g) from a small neighborhood of the neutral element of Proj0(M, g) lies in Proj′. Then, Proj0(M, g) ⊆ Proj′. Since Proj′ is evidently connected, Proj0(M, g) = Proj′ as we claimed. 3 The group of projective transformations of a closed Randers manifold Above we constructed an example of a closed manifold (M, g) whose dimension of the group of projective transformations contradicts the statement of [9, Theorem 2]. The universal cover of this manifold is the standard sphere with the standard metric, and has the dimension of the group of projective transformations equal to n(n + 2), so the nature of our counterexample is in a certain sense topological. Of course, one can construct many other counterexamples of the same nature (i.e., such that the universal cover is the standard sphere but the group of the projective transformations has the dimension less then the dimension of the group of the projective transformations of the standard sphere but is still sufficiently big). The following (recently proved) statement shows that such examples are essentially all pos- sible counterexamples to [9, Theorem 2]: 4 V.S. Matveev Fact (Corollary 3 of [6]). Let (M,F ) be a closed connected Randers manifold with F given by (1). Then, at least one of the following possibilities holds: (i) There exists a closed form λ̂ such that Proj0(M,F ) consists of isometries of the Finsler metric F (x, ξ) = √ g(ξ, ξ) + ω(ξ)− λ̂(ξ), or (ii) the form ω is closed and g has constant positive sectional curvature. In the case (i) of Fact above, i.e., when there exists a closed form λ̂ such that Proj0(M,F ) consists of isometries of the the Finsler metric F (x, ξ) = √ g(ξ, ξ) + ω(ξ) − λ̂(ξ), the group Proj(M,F ) has dimension at most n(n+1) 2 , see [8, Proposition 6.4]. In the case (ii) of Fact above, the group of projective transformations of F coincides with the group of the projective transformations of g. Now, by [4, 7], the connected component Proj0(M, g) of this group contains not only isometries, only if g has constant positive sectional curvature. Thus, if the dimension of the group of the projective transformations of a closed (n ≥ 2)-dimensional Randers manifold (M,F ) (with F given by (1)) is greater than n(n+1) 2 , then ω is a closed form and g has constant positive sectional curvature. Then, the lift of F to the universal cover M̃ ∼= Sn of M has the n(n+ 2)-dimensional group of the projective transformations. Note that, different from [9], in the Fact above we do not require that the metric has constant flag curvature – this is an additional condition on g and ω assumed in [9, Theorem 2]. Let us explain that this assumption (together with the assumption that the manifold is closed) implies that the Randers Finsler metric such that the dimension of its projective group is at least n(n+1) 2 is actually a Riemannian metric (i.e., the form ω in the formula (1) is zero). Indeed, if the condition (ii) of Fact above holds, the Finsler metric F is projectively flat (i.e., in a neighborhood of every point one can find local coordinates such that the geodesics are straight lines). If we additionally assume that the metric has constant flag curvature, the form ω must be identically zero by [1, Section 7.3] so the metric is Riemannian. Now, the condition (i) of Fact above implies already that the metric F is a Riemannian metric in view of [8, Theorem 7.1] (for n 6= 2, 4 this fact also follows from [3, 10]). Acknowledgements. We thank O. Yakimova for useful discussions and the Deutsche For- schungsgemeinschaft (GK 1523) for partial financial support. References [1] Bao D., Robles C., Shen Z., Zermelo navigation on Riemannian manifolds, J. Differential Geom. 66 (2004), 377–435, math.DG/0311233. [2] Beltrami E., Risoluzione del problema: riportare i punti di una superficie sopra un piano in modo che le linee geodetische vengano rappresentante da linee rette, Ann. di Mat. 1 (1865), no. 7, 185–204. [3] Chen X., Deng S., A new proof of a theorem of H.C. Wang, Balkan J. Geom. Appl. 16 (2011), 25–26. [4] Matveev V.S., Die Vermutung von Obata für Dimension 2, Arch. Math. (Basel) 82 (2004), 273–281. [5] Matveev V.S., Geometric explanation of the Beltrami theorem, Int. J. Geom. Methods Mod. Phys. 3 (2006), 623–629. [6] Matveev V.S., On projective equivalence and pointwise projective relation of Randers metrics, arXiv:1112.6143. [7] Matveev V.S., Proof of the projective Lichnerowicz–Obata conjecture, J. Differential Geom. 75 (2007), 459–502, math.DG/0407337. [8] Matveev V.S., Troyanov M., The Binet–Legendre metric in Finsler geometry, arXiv:1104.1647. [9] Rafie-Rad M., Rezaei B., On the projective algebra of Randers metrics of constant flag curvature, SIGMA 7 (2011), 085, 12 pages, arXiv:1108.6127. [10] Wang H.C., On Finsler spaces with completely integrable equations of Killing, J. London Math. Soc. 22 (1947), 5–9. http://arxiv.org/abs/math.DG/0311233 http://dx.doi.org/10.1007/s00013-003-4905-8 http://dx.doi.org/10.1142/S0219887806001296 http://arxiv.org/abs/1112.6143 http://arxiv.org/abs/math.DG/0407337 http://arxiv.org/abs/1104.1647 http://dx.doi.org/10.3842/SIGMA.2011.085 http://arxiv.org/abs/1108.6127 http://dx.doi.org/10.1112/jlms/s1-22.1.5 1 Introduction 2 Example 3 The group of projective transformations of a closed Randers manifold References