Bring's Curve: its Period Matrix and the Vector of Riemann Constants
Bring's curve is the genus 4 Riemann surface with automorphism group of maximal size, S₅. Riera and Rodríguez have provided the most detailed study of the curve thus far via a hyperbolic model. We will recover and extend their results via an algebraic model based on a sextic curve given by both...
Gespeichert in:
Datum: | 2012 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут математики НАН України
2012
|
Schriftenreihe: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/148391 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Bring's Curve: its Period Matrix and the Vector of Riemann Constants / H.W. Braden, T.P. Northover // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 19 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineZusammenfassung: | Bring's curve is the genus 4 Riemann surface with automorphism group of maximal size, S₅. Riera and Rodríguez have provided the most detailed study of the curve thus far via a hyperbolic model. We will recover and extend their results via an algebraic model based on a sextic curve given by both Hulek and Craig and implicit in work of Ramanujan. In particular we recover their period matrix; further, the vector of Riemann constants will be identified. |
---|