Bring's Curve: its Period Matrix and the Vector of Riemann Constants
Bring's curve is the genus 4 Riemann surface with automorphism group of maximal size, S₅. Riera and Rodríguez have provided the most detailed study of the curve thus far via a hyperbolic model. We will recover and extend their results via an algebraic model based on a sextic curve given by both...
Gespeichert in:
Datum: | 2012 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут математики НАН України
2012
|
Schriftenreihe: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/148391 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Bring's Curve: its Period Matrix and the Vector of Riemann Constants / H.W. Braden, T.P. Northover // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 19 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-148391 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1483912019-02-19T01:26:14Z Bring's Curve: its Period Matrix and the Vector of Riemann Constants Braden, H.W. Northover, T.P. Bring's curve is the genus 4 Riemann surface with automorphism group of maximal size, S₅. Riera and Rodríguez have provided the most detailed study of the curve thus far via a hyperbolic model. We will recover and extend their results via an algebraic model based on a sextic curve given by both Hulek and Craig and implicit in work of Ramanujan. In particular we recover their period matrix; further, the vector of Riemann constants will be identified. 2012 Article Bring's Curve: its Period Matrix and the Vector of Riemann Constants / H.W. Braden, T.P. Northover // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 19 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 14H45; 14H55; 14Q05 DOI: http://dx.doi.org/10.3842/SIGMA.2012.065 http://dspace.nbuv.gov.ua/handle/123456789/148391 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Bring's curve is the genus 4 Riemann surface with automorphism group of maximal size, S₅. Riera and Rodríguez have provided the most detailed study of the curve thus far via a hyperbolic model. We will recover and extend their results via an algebraic model based on a sextic curve given by both Hulek and Craig and implicit in work of Ramanujan. In particular we recover their period matrix; further, the vector of Riemann constants will be identified. |
format |
Article |
author |
Braden, H.W. Northover, T.P. |
spellingShingle |
Braden, H.W. Northover, T.P. Bring's Curve: its Period Matrix and the Vector of Riemann Constants Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Braden, H.W. Northover, T.P. |
author_sort |
Braden, H.W. |
title |
Bring's Curve: its Period Matrix and the Vector of Riemann Constants |
title_short |
Bring's Curve: its Period Matrix and the Vector of Riemann Constants |
title_full |
Bring's Curve: its Period Matrix and the Vector of Riemann Constants |
title_fullStr |
Bring's Curve: its Period Matrix and the Vector of Riemann Constants |
title_full_unstemmed |
Bring's Curve: its Period Matrix and the Vector of Riemann Constants |
title_sort |
bring's curve: its period matrix and the vector of riemann constants |
publisher |
Інститут математики НАН України |
publishDate |
2012 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/148391 |
citation_txt |
Bring's Curve: its Period Matrix and the Vector of Riemann Constants / H.W. Braden, T.P. Northover // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 19 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT bradenhw bringscurveitsperiodmatrixandthevectorofriemannconstants AT northovertp bringscurveitsperiodmatrixandthevectorofriemannconstants |
first_indexed |
2025-07-12T19:20:39Z |
last_indexed |
2025-07-12T19:20:39Z |
_version_ |
1837470131416989696 |
fulltext |
Symmetry, Integrability and Geometry: Methods and Applications SIGMA 8 (2012), 065, 20 pages
Bring’s Curve: its Period Matrix
and the Vector of Riemann Constants?
Harry W. BRADEN and Timothy P. NORTHOVER
School of Mathematics, Edinburgh University, Edinburgh, Scotland, UK
E-mail: hwb@ed.ac.uk, T.P.Northover@gmail.com
Received June 10, 2012, in final form September 27, 2012; Published online October 02, 2012
http://dx.doi.org/10.3842/SIGMA.2012.065
Abstract. Bring’s curve is the genus 4 Riemann surface with automorphism group of
maximal size, S5. Riera and Rodŕıguez have provided the most detailed study of the curve
thus far via a hyperbolic model. We will recover and extend their results via an algebraic
model based on a sextic curve given by both Hulek and Craig and implicit in work of
Ramanujan. In particular we recover their period matrix; further, the vector of Riemann
constants will be identified.
Key words: Bring’s curve; vector of Riemann constants
2010 Mathematics Subject Classification: 14H45; 14H55; 14Q05
1 Introduction
Bring’s curve is the genus 4 Riemann surface with the automorphism group of maximal size, S5
[3, 9, 10, 19]. It may be expressed as the complete intersection in P4 given by
x1 + x2 + x3 + x4 + x5 = 0,
x2
1 + x2
2 + x2
3 + x2
4 + x2
5 = 0,
x3
1 + x3
2 + x3
3 + x3
4 + x3
5 = 0.
Here the permutations of the coordinates xi make manifest the S5 symmetry. The curve naturally
arises in the study of the general quintic
5∏
i=1
(x−xi) when this is reduced to Bring–Jerrard form
x5 +bx+c. Just as with Klein’s curve, Bring’s curve may be studied by either plane algebraic or
hyperbolic models. Perhaps the most detailed study thus far is that of Riera and Rodŕıguez [17]
via a hyperbolic model. Using a representation much like that of Klein’s curve they produced
the very simple period matrix
τ = τ0
4 1 −1 1
1 4 1 −1
−1 1 4 1
1 −1 1 4
, (1.1)
for a determined τ0 ∈ C. This period matrix already exhibits much of the symmetry implicit
in the automorphism group and we won’t attempt to improve on this result. We shall however
reproduce this result and the homology basis of Riera and Rodŕıguez by studying a plane model
of the curve and then compute the vector of Riemann constants. All these we believe are new.
To do this we shall use and extend the techniques of [2]. These techniques have been developed
to implement the modern approach to integrable systems based upon a spectral curve.
?This paper is a contribution to the Special Issue “Geometrical Methods in Mathematical Physics”. The full
collection is available at http://www.emis.de/journals/SIGMA/GMMP2012.html
mailto:hwb@ed.ac.uk
mailto:T.P.Northover@gmail.com
http://dx.doi.org/10.3842/SIGMA.2012.065
http://www.emis.de/journals/SIGMA/GMMP2012.html
2 H.W. Braden and T.P. Northover
It remains to introduce the plane model of Bring’s curve we shall employ. In [8], Dye explicitly
gives a sextic plane curve and proves its equivalence to Bring’s. The remarkable fact about this
representation is that, of the full S5 symmetry group, A5 is generated by projectivities in P2.
Dye’s sextic is not the one we use. In [5]1, Craig studies the rational points of a second genus-4
sextic which possesses at least A5 as a symmetry group. This work generalizes a similar result for
Klein’s curve, where the curve is parameterized by modular functions. Craig observes that work
of Ramanujan means the coordinates of the curve may also be expressed in terms of modular
functions. In fact Craig’s model is very closely related to Dye’s and we will show that it too
is equivalent to Bring’s curve by giving an explicit transformation of P2 mapping between the
representations of Dye and Craig. The sextic studied by Craig had in fact been introduced by
Hulek [13, p. 82] who also makes connection with the modular properties, and we will refer to
this curve as the Hulek–Craig (HC) curve throughout. This representation will be more useful
for our purposes than Dye’s since it has a more obvious real structure and simpler branching
properties.
An outline of the paper is as follows: in Section 2 we shall discuss some plane sextics describing
Bring’s curve. The Hulek–Craig curve will be described in detail in Section 3 while in Section 4
we shall recall the Riera–Rodŕıguez hyperbolic model of Bring’s curve. Here a detailed analysis
will enable us to identify the two descriptions and in particular the homology basis of Riera
and Rodŕıguez, the period matrix then following. Our identification will make use of the real
structure and fixed oval of the models, described in increasing detail in Sections 2 and 3. Finally
in Section 5 we determine the vector of Riemann constants for the curve.
2 Two sextics
2.1 Dye’s sextic
Let j = 1+
√
5
2 , a root of j2 = j + 1. Dye [8] introduces the plane sextic curves given by
Dλ(x, y, z) := (x+ jy)6 + (x− jy)6 + (y + jz)6
+ (y − jz)6 + (z + jx)6 + (z − jx)6 + λ
(
x2 + y2 + z2
)3
= 0.
For generic λ ∈ C the curve has genus 10, but if λ is chosen to be −78+104j
5 then the genus drops
to 4 and the resulting curve is shown to be equivalent to Bring’s. We correspondingly define
D(x, y, z) := D− 78+104j
5
(x, y, z).
The curve D(x, y, z) has the obvious order three cyclic symmetry
b′ : (x, y, z) 7→ (y, z, x),
as well as the less obvious order two symmetry
a′ :
xy
z
7→
−j 1 j2
1 −j2 j
j2 j 1
xy
z
,
both presented by Dye in his paper. It is easy to check that these are the classical generators
for A5:
a′b′ =
j2 −j 1
j 1 −j2
1 j2 j
1See [6] for errata; see http://members.optusnet.com.au/~towenaar/ for a corrected version.
http://members.optusnet.com.au/~towenaar/
Bring’s Curve: its Period Matrix and the Vector of Riemann Constants 3
has order five and (taking into account the projective nature of the space)
a′2 = b′3 = (a′b′)5 = 1.
2.2 The Hulek–Craig sextic
Hulek and Craig both introduce the sextic
C(x̄, ȳ, z̄) := x̄
(
ȳ5 + z̄5
)
+ (x̄ȳz̄)2 − x̄4ȳz̄ − 2(ȳz̄)3 = 0. (2.1)
This curve is also of genus 4 and admits A5 as a symmetry group2. In this case an order five
symmetry is obvious and we may take
ab : (x̄, ȳ, z̄) 7→
(
ζ2x̄, ζ4ȳ, z̄
)
,
where ζ = e2πi/5. There is also a corresponding order two symmetry
a :
x̄ȳ
z̄
7→
1 2 2
1 ζ + ζ−1 ζ2 + ζ−2
1 ζ2 + ζ−2 ζ + ζ−1
x̄ȳ
z̄
.
Together these generate A5 again since aab =: b has order three (hence the slightly unusual
choice of notation for ab above).
In fact the sextic (2.1) is also a model for Bring’s curve using Dye’s result and the following
theorem.
Theorem 1. With A =
j 1 1
0 −i
√
2 + j i
√
2 + j
1 −j −j
then D(Ax) = −960(9+4
√
5)C(x) and hence
D(x) = 0 ⇐⇒ C(A−1x) = 0.
This may be directly verified. The choice of the matrix A follows upon consideration of the
conjugacy classes of automorphisms of both models (see [15] for further details).
We observe that the antiholomorphic involution [x̄, ȳ, z̄] 7→ [x̄∗, ȳ∗, z̄∗] (where ∗ is complex
conjugation) is a symmetry of C though it is orientation-reversing and so not a conformal auto-
morphism. This involution endows C with a real structure. The fixed point set of such a real
structure is either empty or the disjoint union of simple closed curves, known as ovals following
Hilbert’s terminology [4]. A classical result of Harnack for a Riemann surface of genus g with
real structure says there are at most g + 1 ovals. We shall show the the HK curve has one oval
with this real structure.
3 Details of the Hulek–Craig curve
The representation (2.1) will turn out to be the most convenient for later work so it is worth
spending some time on its detail, particularly its desingularisation.
2Here a bar over variables is used to distinguish them from the Dye curve, rather than to denote complex con-
jugation. Craig notes the results of Ramanujan [1, Chapter 19, Entry 10(iv), 10(vii)] entail the parameterization
(x̄, ȳ, z̄) =
(
∞∑
n=−∞
q(5n)2 ,
∞∑
n=−∞
q(5n+1)2 ,
∞∑
n=−∞
q(5n+2)2
)
.
4 H.W. Braden and T.P. Northover
3.1 Special points of the Hulek–Craig representation and desingularisation
The points at infinity for the HC curve (2.1) are given by (the real points) [0, 1, 0] and [1, 0, 0],
but the latter is singular. In fact the singularities of the HC curve are [1, 0, 0] and [ζk, ζ2k, 1]
for k ∈ {0, . . . , 4} so we must work out expansions nearby in order to form a properly compact
curve.
First the infinite singularity: consider the structure near [1, 0, 0], say at points [1, y, z] for
small y, z. The curve reduces to
y5 + z5 + y2z2 − yz − 2y3z3 = 0,
so in the usual Puiseux construction we suppose z = Ayα + · · · . Equating lowest order terms
we get one of
• A5y5α −Ayα+1 = 0 which implies z = y1/4 + · · · , that is z ≈ y1/4 near this point,
• y5 −Ayα+1 = 0 which implies z = y4 + · · · or z ≈ y4.
The second of these gives a single z for each y near 0, the first gives four different values for z.
Together these make up the expected five sheets and so expansions after this point are unique.
Thus in the vicinity of [1, 0, 0] solutions [1, y, z] of the first equation behave as [1, t4, t] where t is
a local parameter for the curve. Similarly the second equation has solutions behaving as [1, t, t4]
in terms of a local parameter. Thus the point [1, 0, 0] desingularises into precisely two points on
the nonsingular curve:
[1, 0, 0]1 ∼
[
1, t4, t
]
, [1, 0, 0]2 ∼
[
1, t, t4
]
, (3.1)
where ∼ here indicates behaviour of a local coordinate in the vicinity of a specified point.
For the remaining singular points we only need to investigate explicitly one and then note
that the automorphism [x, y, z] 7→ [ζx, ζ2y, z] will tell us how the other singularities behave. So
we look at [1, 1, 1]. At first sight, two of the sheets come together here. Consider [1 + ε, y, 1]
near to [1, 1, 1]. To first order
y5 − 2y3 + y2 − y + 1 = 0.
This quintic has four distinct roots: two are complex, corresponding to nonsingular points and
will play no role in future developments. There is a real negative root α ∼ −1.7549 which also
corresponds to a nonsingular point and will occur later. Finally, 1 is a root, which gives us the
expected singularity at [1, 1, 1].
Expanding about this singular point, at the next order we discover
y = 1 + ε
−1 +
√
5
2
+ · · · , y = 1 + ε
−1−
√
5
2
+ · · · .
These are clearly distinct solutions and together with the nonsingular expansions exhaust the
five possible nonsingular preimages near x = 1, so [1, 1, 1] once again desingularises to two
distinct points.
3.2 Branched covers of P1
We now consider the curve (2.1) as a branched cover of P1 with x as the coordinate. The affine
part of the HC curve is obtained by setting z = 1 in (2.1) yielding
xy5 + x+ x2y2 − x4y − 2y3 = 0. (3.2)
Bring’s Curve: its Period Matrix and the Vector of Riemann Constants 5
There are 5 sheets above the generic x, with branch points at 0,∞ and{
ζk
4
(
1674± 870i
√
15
)1/5
: k ∈ {0, . . . , 4}
}
.
There is also a double solution at x = ζk but these are precisely the singular points similar to
[1, 1, 1] we investigated before and after resolution the cover is regular there.
At x = 0 we have two preimages, one corresponding to [0, 0, 1] with an expansion
y =
1
21/3
x1/3 + · · · , (3.3)
where three sheets come together, and the other corresponding to [0, 1, 0] with expansion
y =
√
2x−1/2 + · · · (3.4)
where two sheets come together. Similarly at x = ∞ we have two preimages after desingu-
larisation: [1, 0, 0]1 where from [1, t4, t] ≡ [t−1, t3, 1] and y ≈ x−3; and [1, 0, 0]2 where from
[1, t, t4] ≡ [t−4, t−3, 1] and y ≈ x3/4. The other 10 branch points correspond to the solutions of
256x10 − 837x5 + 3456 = 0 and have two sheets coming together at each3.
3.3 Real paths on the Hulek–Craig curve
The real structure of the HK curve leads to real ovals. Here we shall show there is in fact one.
We begin by looking at portions of this oval, which we shall refer to as a ‘real path’ and then
indicate how they join together4. The real paths in this cover will be of particular interest later
on so we will take some time to explore their nature now. We begin with the affine curve,
further noting what happens at the real infinite points [0, 1, 0], [1, 0, 0]1,2 which compactify the
real curve.
First, if the number of real roots of (3.2) considered as a polynomial in y changes then its
discriminant
∆(x) = −x3
(
256x20 − 1349x15 + 5386x10 − 7749x5 + 3456
)
= −x3
(
256u2 − 837u+ 3456
)
(u− 1)2, u = x5, (3.5)
must vanish there. The only real roots of the equation ∆(x) = are x = 0, 1, so we are reduced
to considering the intervals (−∞, 0), (0, 1), (1,∞).
• If x < 0 then there is just one real root.
• If 0 < x < 1 then there are three real roots.
• If x > 1 then there are also three real roots.
Referring to the expansions (3.3) and (3.4) we see that a real path starting with x < 0 moving
towards x = 0 must be approaching [0, 0, 1] along the expansion y = 2−1/3x1/3 + · · · (i.e. y → 0
too). Continuity demands that when extended past x = 0 it too should have y small and positive
for small x > 0. We will call this path γ0.
3We remark that the Maple command monodromy(xy5 +x+x2y2−x4y−2y3, x, y,showpaths) will produce the
monodromy data for the HK curve, together with the paths and sheet numbering necessary to make sense of this
data. The branch point 0 has monodromy [1, 2][3, 4, 5] while that of ∞ is [1, 4, 5, 2]; these are the cycle structures
described above. The remaining ten branch points arranged with increasing argument have monodromies [1, 4],
[2, 4], [2, 5], [1, 5], [1, 3], [2, 3],[2, 4], [1, 4], [1, 5] respectively, here indicating the two sheets that come together.
4The Maple command plot real curve(xy5 + x + x2y2 − x4y − 2y3, x, y) will in fact plot this directly.
6 H.W. Braden and T.P. Northover
We now turn our attention to another real path approaching x = 0, this time for x > 0. It
must lie on the expansion y =
√
2x−1/2 + · · · and hence y is either large and positive or large
and negative; we will call these paths γ+ and γ−. In fact the expansion is telling us that γ+
and γ− meet at [0, 1, 0] and we could form a single continuous path, but we will maintain the
distinction for now.
In summary we have three real paths coming out of x = 0 along the positive axis, satisfying
(for small x > 0),
y(γ−)� 0 < y(γ0)� y(γ+).
Now we are ready to consider what happens at x = 1. On the desingularised curve there are
three real points here (the two from desingularising y = 1 and the remaining real root α). Each
of the curves coming out of x = 0 must pass through one of them. Further, the order of the
y values among the paths must be the same approaching x = 1 as it was leaving x = 0 since,
otherwise, they would have crossed in between and this would have shown itself in (3.5).
The three expansions near x = 1 in order of increasing y for x < 1 are
y ≈ α, y ≈ 1 + (x− 1)
−1 +
√
5
2
, y ≈ 1 + (x− 1)
−1−
√
5
2
.
Thus the path that started y � 0 must pass through the first point, y ≈ 0 must pass through
the second and y � 0 the third. Significantly this means the latter two paths actually cross at
x = 1 and for x = 1 + ε we have
y(γ−) < y(γ+) < 1 < y(γ0).
Finally we consider the remaining points [1, 0, 0]1,2 at ∞. Recall the expansions (3.1). If
x � 0 then naturally there is only one real path, which arrives at [1, 0, 0]1 with small y. If
x � 0 the situation is very similar to x = 0: two expansions with |y| � 0 arriving at [1, 0, 0]2
and one lying between these with y ≈ 0. As before, the paths cannot have crossed between
x = 1 and x =∞ and so we are forced to conclude that γ− has the expansion y ≈ −x3/4, γ+ has
the expansion y ≈ x−3 and γ0 has the expansion y ≈ x3/4 near ∞.
Putting these facts together we can plot Fig. 1 (the joined semicircular dots represent the
same point on the curve, separated to show the distinct y values of paths entering them). We
discover that all the paths (γ−, γ0, γ+ and the x < 0 path) actually form part of one large closed
loop showing that the real structure of the HK curve has one oval. (Another proof of this will
be given in the next section.)
4 The Riera and Rodŕıguez hyperbolic model
4.1 Introduction to H
Riera and Rodŕıguez, in [17], give Bring’s curve as a quotient, H, of the hyperbolic disc. They
then proceed to calculate a period matrix taking account of the symmetries of the curve.
The essential features of the model can be seen in Fig. 2. The surface is seen to be a 20-
gon with edges identified as shown in the table below the figure. (We refer, for example, to
the identified edges 2 and 9 as 2/9.) This leads to the polygon’s vertices falling into three
equivalence classes, also annotated in the figure. Naturally, this surface has genus 4.
For future calculations it will also be very useful to know the conformal structure (or equiva-
lently, the local holomorphic coordinate) about the points P1, P2 and P3. This can be recon-
structed quite easily from Fig. 2. For example, start near P1 in the bottom right quadrant
on edge 2/9. Make a small arc around P1 proceeding anticlockwise and you will next reach
Bring’s Curve: its Period Matrix and the Vector of Riemann Constants 7
y ∼
√
2x−1/2
y ∼ 21/3x1/3
y ∼ −
√
2x−1/2
y ∼ x−3
y ∼ −x3/4
y ∼ x3/4
γ− γ+ γ0
x = 0
x = ∞
Figure 1. Real paths on the Hulek–Craig curve as a branched cover of P1.
edge 1/14. Repeating at edge 14 tells us that we next meet 6/13. If this procedure is continued
we obtain Fig. 3.
The polygon can be tiled by 120 double triangles (one can take a sector of the central pentagon
as a fundamental domain). Now consider the automorphism group. Let d be a rotation of π
2
about a vertex of the central pentagon and c be a rotation of π about the midpoint of an adjacent
pentagon edge. Then clearly c2 = d4 = 1. But it is also easy to see that cd is a rotation of 2π
5
about the centre and hence (cd)5 = 1. The rotations c and d are thus the classical generators
of S5 and this describes the entire automorphism group of Bring’s curve.
Riera and Rodŕıguez give the homology basis for this model by prescribing which edges of
the polygon to traverse. We are going to construct an equivalent basis for the HK curve by
understanding an isomorphism
f : H →
{
(x, y, z) ∈ C3 : C(x, y, z) = 0
}
(4.1)
well enough to determine the precise values to which each edge of the polygon in Fig. 2 maps.
Once this is achieved, converting the homology basis will be a purely mechanical affair as
illustrated in [2] for Klein’s curve. Along the way we will gain some understanding of how f
acts on the automorphism group by push-forwards.
4.2 Riera and Rodŕıguez basis
We start by recapitulating the hyperbolic basis of interest. Riera and Rodŕıguez begin with a
simple non-canonical basis. They first define
α1 = 1 + 2, α2 = 3 + 4
(in edge traversal notation, see [16, 17]) and then act on these cycles by rotations of 2πk
5 to
obtain their initial basis. So essentially
αi = (2i− 1) + (2i).
8 H.W. Braden and T.P. Northover
C
P1
P2
P3
P2
P1
P2
P3
P2
P1 P2
P3
P2
P1
P2
P3
P2
P1
P2
P3P2
R
1
2
3
4
5
6
7
8
910
11
12
13
14
15
16
17
18
19 20
Edge identifications
1 ↔ 14 5 ↔ 18 9 ↔ 2 13 ↔ 6 17 ↔ 10
3 ↔ 12 7 ↔ 16 11 ↔ 20 15 ↔ 4 19 ↔ 8
Figure 2. Riera and Rodŕıguez hyperbolic model, H, of Bring’s curve.
Next they specify (by fiat) a matrix which transforms these αi into a canonical basis and
proceed to derive further basis change to make use of the symmetries. The end result is the
following basis-change matrix (implicit in [17])
1 0 0 0 −2 0 1 0
1 −1 0 −1 −1 1 1 1
1 −1 0 0 −1 2 1 −1
0 −1 0 0 1 2 0 0
1 −1 1 0 −1 1 −1 −1
1 −1 1 −1 0 0 −1 1
1 −1 1 −1 0 1 0 1
0 −1 0 −1 1 1 1 2
, (4.2)
which sends the initial α1, . . . , α8 homology basis to another {ai, bi}4i=1, that is not only canonical
but behaves well with respect to the symmetry group of the curve. Now the symmetries relate
the periods Aij =
∫
ai
vj and Bij =
∫
bi
vj (for any basis of holomorphic differentials vi). As
a consequence, the period matrix τ = BA−1 can be written as (1.1), where τ0 ≈ −0.5+0.185576i
is defined in terms of Klein’s j-invariants5 by
j(τ0) = −293 × 5
25
, j(5τ0) = −25
2
. (4.3)
5Riera and Rodŕıguez swap these two equations. However, we believe this to be a typographical error.
Bring’s Curve: its Period Matrix and the Vector of Riemann Constants 9
P1
1/14
6/13
5/18 10/17
2/9
P3
3/12
11/20
8/19 7/16
4/15
P2
4/15
1/14
11/20
10/7
7/16 6/13 3/12
2/9
8/19
5/18
Figure 3. Conformal structure of P1, P2 and P3.
4.3 Understanding the isomorphism f
We now turn our attention to the isomorphism, f , mentioned in (4.1). Clearly there won’t be
a single isomorphism since if a is an automorphism of H and σ of an automorphism of the
HC curve then σ ◦ f ◦ a will also be an isomorphism from the hyperbolic model H to the HC
representation. We will exploit this fact.
There are two key ingredients to our identification. First is the rotation of the entire hy-
perbolic polygon about its centre by 2π/5 (the automorphism cd above). This automorphism
allows us to express all twenty of the polygon’s edges in terms of just four, a great simplification
of our problem. If we knew the values of f on four edges, and the matrix representing f∗(cd),
the induced action of cd on the HC curve, then
f(edge k + 4) = f ((cd)(edge k)) = f∗(cd)f(edge k),
which allows us to compute the values of f on the remaining 16 edges.
Second is a geodesic reflection of the hyperbolic disc which will correspond to our real struc-
ture; the geodesic is denoted by the dashed lines in Fig. 2. The line starts at P3, goes through C
to P1, along edge 1 to P2 and along edge 3 back to P3. If we knew how this acted on the HC
model, we would know its fixed points correspond in some manner to edges 1/14 and 3/12,
and the marked diameter. Identifying points P1, P2 and P3 on the HC representation would
then complete the picture by dividing this fixed line up into just the intervals needed to draw
homology paths around known branch points.
Starting with the central rotation cd on the hyperbolic model and some isomorphism f to the
HC representation, since all order 5 elements of S5 are conjugate there is an HC-automorphism
σ ∈ S5 such that
σf∗(cd)σ−1 = Zk,
10 H.W. Braden and T.P. Northover
where k ∈ {0, . . . , 4} and
Z : [x, y, z] 7→
[
ζx, ζ2y, z
]
.
We are being flexible about which power of Z occurs here because later choices (specifically
rotations about R in Fig. 2) will modify any decision made at this stage. But then
(σ ◦ f)∗(cd) = σ∗(f∗(cd)) = σf∗(cd)σ−1 = Zk.
So the isomorphism σ ◦ f from the hyperbolic model to the HC model sends cd to Zk.
Now consider a rotation about R in Fig. 2 which cyclically permutes the fixed points of cd.
The fixed points on the hyperbolic side are C, P1, P2, P3 and on the HC side [0, 1, 0], [0, 0, 1],
[1, 0, 0]1, [1, 0, 0]2. Let integers i and n be defined by the equations
Pi = (σ ◦ f)−1([0, 0, 1]), Rn(Pi) = C.
Then
(σ ◦ f ◦R−n)(C) = (σ ◦ f ◦R−n)(Rn(Pi)) = (σ ◦ f)(Pi) = [0, 0, 1],
and further(
σ ◦ f ◦R−n
)
∗ (cd) = (σ ◦ f)∗
(
R−n∗ (cd)
)
= (σ ◦ f)∗
(
(cd)j
)
= Zjk = Zm,
for some integers j and more importantly m. Since we haven’t fixed the power of Z up to now
this means that σ ◦ f ◦R−n serves our purposes just as well as σ ◦ f did.
Although we have used most of the available freedoms to constrain the relation between f , Z
and C, we actually still have the ability to apply a central rotation, if it would help since that
would alter neither of the properties above.
Next consider complex conjugation on the HC model. This is a symmetry that reverses
orientation (and so not part of the S5 symmetry group). It fixes an entire line (the real axis)
including the fixed points of Z. In the hyperbolic picture this means it must be a reflection
about some diameter. We use our final remaining freedom to demand that it is reflection about
the dashed diameter in Fig. 2, i.e. that the real axis in the HC model corresponds to these
dashed edges (and diameter).
We now have two tasks remaining:
• Find out what P1, P2 and P3 become on the HC model so we can describe edge 1/14 as
the real path from P2 to P1 and edge 3/12 as the real path from P2 to P3.
• Find out what power of Z the central rotation of 2π/5 becomes so we can describe (for
example) edge 4/15 as Zk applied to the real path from P2 to P3.
The second task is actually easier to accomplish at this stage. Consider the structure near
[0, 0, 1] (which we demanded was the centre of the polygon, C, hyperbolically); there are three
sheets coming together at this branch so unwrapping it will effectively divide angles by 3. Ma-
thematically this means that any set of manifold coordinates φ : C → C centred on [0, 0, 1] will
satisfy
φ([x, y, 1])3 = αx+O
(
x2
)
.
In these coordinates, since [0, 0, 1] is a fixed point Z : [x, y, z] 7→ [ζx, ζ2y, z] acts locally as a
rotation
Zφ(t) = βt+O
(
t2
)
,
Bring’s Curve: its Period Matrix and the Vector of Riemann Constants 11
Sheet 1
Sheet 2
Sheet 3
ǫ
Z(ǫ)?
Z(ǫ)
Z(ǫ)?
Figure 4. Intuitive action of Z near [0, 0, 1].
where β is characteristic of Z and independent of φ. Now, on the one hand
Zφ (φ([x, y, 1]))3 = φ (Z([x, y, 1]))3 = φ
(
[ζx, ζ2y, 1]
)3
= αζx+O
(
x2
)
,
but also
Zφ (φ([x, y, 1]))3 =
(
βφ([x, y, 1]) +O
(
φ2
))3
= β3φ([x, y, 1])3 +O
(
φ4
)
= β3αx+O
(
x2
)
.
So β3 = ζ, or
β = exp
(
2πi
15
+
2πik
3
)
for some k ∈ {0, 1, 2}. But since Z has order 5 we also know that β5 = 1, which in terms of k
means that
2πi
3
+
10πik
3
=
2πi
3
(1 + 5k) ∈ 2πiZ,
or β = exp(4πi
5 ) and at last we can conclude that Z corresponds to a rotation of 22πi
5 about C
in the hyperbolic model.
Intuitively we have unwrapped the three sheets coming together at [0, 0, 1] to obtain Fig. 4
in x. We know that Z sends (say) [ε, y, 1] to [ζε, y′, 1] on some sheet y′, which makes it one of
the labelled destinations. But only one of these gives an order 5 transformation so we know Z
completely.
Using this information, together with our knowledge that complex conjugation on the HC
model is the dashed reflection in Fig. 2, allows us to deduce the outline structure in Fig. 5. The
dots are the branch-points of the HC model and the grey lines are the images of the hyperbolic
polygon’s edges under the isomorphism to the HC model. It remains to establish which parts
(and sheets) of each spoke in Fig. 5 correspond to which hyperbolic edges (for example, does
edge 1/14 correspond to x > 0 or x < 0, and what about y?).
Similar analysis of the other fixed points of Z will allow us actually to identify the remai-
ning Pi. We first discover
• Near [0, 1, 0], Z is a rotation of 3
(
2π
5
)
.
• Near [1, 0, 0]1 ∼ [1, t4, t], Z is a rotation of 4
(
2π
5
)
.
12 H.W. Braden and T.P. Northover
1/14 and 3/12
2/
9
an
d
11
/2
0
10/17 and
8/19
5/
18
an
d
7/
16
6/13
an
d
4/15
Figure 5. Hyperbolic polygonal edges in the Hulek–Craig model.
Table 1. Values for [x, y, 1] on hyperbolic edges.
1/14 [R+,R+, 1] 2/9 [ζR+, ζ
2R+, 1]
3/12 [R+,R−, 1] 4/15 [ζ4R+, ζ
3R−, 1]
5/18 [ζ3R+, ζR+, 1] 6/13 [ζ4R+, ζ
3R+, 1]
7/16 [ζ3R+, ζR−, 1] 8/19 [ζ2R+, ζ
4R−, 1]
10/17 [ζ2R+, ζ
4R+, 1] 11/20 [ζR+, ζ
2R−, 1]
• Near [1, 0, 0]2 ∼ [1, t, t4], Z is a rotation of 2π
5 .
But hyperbolically, it is easy to see that a rotation of 2
(
2π
5
)
about C (which Z is) is the same
as one of 4
(
2π
5
)
about P1, 3
(
2π
5
)
about P2 or 2π
5 about P3 so we can deduce that [0, 1, 0]↔ P2,
[1, 0, 0]1 ∼ [1, t4, t]↔ P1 and [1, 0, 0]2 ∼ [1, t, t4]↔ P3.
Therefore, edge 1/14 corresponds to the real path from [0, 1, 0] to [1, 0, 0]1 ∼ [1, t4, t]; referring
to Fig. 1 we see that this is the path where y starts out large and positive near x = 0 (and
remains positive). Edge 3 corresponds to the real path from [0, 1, 0] to [1, 0, 0]2 ∼ [1, t, t4] which
turns out to be the one starting out large and negative near x = 0 (and remaining negative).
The remaining paths (y small near x = 0) correspond to the diameter of the hyperbolic model
and have no large role to play in describing the homology basis.
Other edges can now be obtained by applying a rotation of 2π/5 on the hyperbolic side
and Z3 on the HC side. The results are in Table 1.
4.4 Riera and Rodŕıguez basis algebraically
We are now in a position to express the Riera and Rodŕıguez basis on this branched cover.
Recall that
αi = (2i− 1) + (2i)
as a prescription on which edges to traverse in the hyperbolic model.
Bring’s Curve: its Period Matrix and the Vector of Riemann Constants 13
α1 α2
Figure 6. α1 and α2 homology cycles for the Hulek–Craig branched cover. Graphs of subsequent αi are
rotations of these by 2πi
5 .
This becomes a specification to look up the relevant edges in Table 1, and construct a path
that has its main component in the specified regions (circling x = 0 and outside all finite branch
points enough times to reach the correct sheets). In fact, just like Riera and Rodŕıguez we only
need to construct α1 and α2 and then repeatedly apply (x, y) 7→ (ζx, ζ2y) to obtain the rest.
To be explicit and referring to Table 1, α1 must go out along x > 0 with y � 0 near 0, loop
around infinity until it can come back in to x = 0 along a ray with arg x = 2π
5 and arg y = 4π
5
before looping around 0 until it can join up with the beginning again. A path conforming to
this description is shown in Fig. 6.
Similarly α2 goes out along x > 0 with y < 0, loops and comes back with argument of x
as −2π/5 and argument of y as 6π/5; it is also depicted in Fig. 6.
Using the software6 introduced in [2] with Klein’s curve as an illustrative example, we may
read these paths into extcurves and convert them into a full basis with the commands
> curve, hom, names := read_pic("homology.pic"):
> zeta := exp(2*Pi*I/5):
> trans := (x,y) -> [zeta^3*x,zeta*y]:
> for i from 1 to 3 do
hom := [op(hom),
transform_extpath(curve, hom[-2], trans),
transform_extpath(curve, hom[-1], trans)];
od:
An immediate check to this calculation is provided by calculating the intersection matrix of
this constructed basis. The command
> Matrix(8, (i,j) -> isect(curve, hom[i], hom[j]));
produces (with considerably less work and chance of error) precisely the matrix claimed by Riera
and Rodŕıguez, namely
0 1 −1 1 −1 0 1 −1
−1 0 1 −1 1 0 0 0
1 −1 0 1 −1 1 −1 0
−1 1 −1 0 1 −1 1 0
1 −1 1 −1 0 1 −1 1
0 0 −1 1 −1 0 1 −1
−1 0 1 −1 1 −1 0 1
1 0 0 0 −1 1 −1 0
.
6Located at http://gitorious.org/riemanncycles.
http://gitorious.org/riemanncycles
14 H.W. Braden and T.P. Northover
Finally we can calculate the period matrix. This may be done analytically (as in [17]) or
numerically via the extcurves package which calculates the period matrix for any homology
basis (implicitly using the Riemann period matrix given by algcurves[periodmatrix]). Using
the the transformation from (4.2) both methods yield
Theorem 2. The homology cycles α1 and α2 for the Hulek–Craig branched cover reproduce the
cycles of Riera and Rodŕıguez and their corresponding period matrix
τ = τ0
4 1 −1 1
1 4 1 −1
−1 1 4 1
1 −1 1 4
,
where τ0 is defined by (4.3).
We also note that the action on the homology basis α1,...,8 associated with the antiinvolution
of the real structure is given by
S ′ :=
0 0 0 0 0 0 −1 0
0 0 0 0 0 −1 0 0
0 0 0 0 −1 0 0 0
0 0 0 −1 0 0 0 0
0 0 −1 0 0 0 0 0
0 −1 0 0 0 0 0 0
−1 0 0 0 0 0 0 0
0 1 0 1 0 1 0 1
.
It is algorithmic to show that
S := TS ′T−1 =
1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −1
,
where T is the symplectic transformation (with respect to the canonical symplectic form)
T =
−1 2 1 2 −1 1 0 1
0 1 0 −3 0 0 0 −1
−2 1 2 −1 0 1 0 0
0 0 −1 0 −1 0 −1 0
2 −2 −3 −2 0 −1 −1 −1
−1 0 1 3 0 1 0 1
1 −1 −1 −2 0 −1 0 −1
−1 2 3 2 0 1 1 1
.
Here S is the canonical form for an antiholomorphic involution where there is one nondividing
real oval (see for example [18]), again showing there is one real oval.
Bring’s Curve: its Period Matrix and the Vector of Riemann Constants 15
5 Vector of Riemann constants
We shall now calculate the vector of Riemann constants for Bring’s curve determining various
other quantities on the way. This vector together with Riemann’s theta function and the Abel
map provide a bridge between the analytic and algebraic structures of a Riemann surface C,
and as such are critical elements in the implementation of the modern approach to integrable
systems.
5.1 The vector of Riemann constants
Riemann established the fundamental result,
θ(e | τ) = 0 ⇐⇒ e ≡ AQ
(
g−1∑
i=1
Pi
)
−KQ ∈ Jac C,
where θ is Riemann’s theta function, AQ is the Abel map with base point Q ∈ C, τ is the
period matrix, g is the genus of C, Pi ∈ C and the equivalence holds in the Jacobian Jac C =
Cg/(Zg + τZg). (We are assuming that g ≥ 1 in what follows.) Both the period matrix τ and
the Abel map depend on a choice of homology basis, the latter through the basis of normalized
holomorphic differentials ω where AQ(P ) =
∫ P
Q ω. The vector KQ is known as the vector of
Riemann constants7 (with base point Q) and it also depends on the choice of homology basis.
Let {γi}2gi=1 = {ai, bi}gi=1 be our choice of homology basis of H1(C,Z), where ai and bi are
canonically paired. One has that
KQj = −1
2
(τjj + 1) +
∑
k 6=j
∮
ak
ωk(P )
∫ P
Q
ωj .
Because of the integrations involved, both τ and KQ are rather transcendental objects. One
may also express
KQ ≡ A∗ (∆− (g − 1)Q) =
∫ ∆
∗
ω − (g − 1)
∫ Q
∗
ω = AQ (∆) , (5.1)
which holds for any base point ∗ of the Abel map and where the degree (g− 1) divisor ∆ is that
of the Szëgo-kernel [12]. The critical relation for us is the linear equivalence
2∆ ∼ KC ,
and so
2KQ ≡ AQ(KC). (5.2)
Here KC is the canonical divisor of C, the unique divisor class of degree 2g−2 of any meromorphic
differential on the curve, and (hereafter) ∼ denotes linear equivalence. Thus ∆ gives a square
root of the canonical bundle or spin-structure on C; the set Σ of divisor classes D such that
2D ∼ KC is called the set of theta characteristics of C. The vector of Riemann constants gives
us the shift in the Jacobian necessary to identify spin structures with the 2-torsion points of the
Jacobian. (Recall, an N -torsion point x is such that Nx lies in the period lattice.)
7The choice of sign of this vector depends on author. We will use that of Fay [12] whose convention is the
negative of Farkas and Kra [11].
16 H.W. Braden and T.P. Northover
5.2 Symmetries and the vector of Riemann constants
We now describe how symmetries may be used to restrict the vector of Riemann constants by
recalling some results we have established elsewhere.
Suppose that a curve has a nontrivial group of symmetries Aut(C). Then the holomorphic
differentials of the curve, H1,0(C,C), and the homology groupH1(C,Z) are both Aut(C)-modules.
Let σ ∈ Aut(C) and denote the actions on these spaces by
σ∗vj =
∑
k
vkL
k
j , σ∗
(
ai
bi
)
= M
(
ai
bi
)
:=
(
A B
C D
)(
ai
bi
)
,
where L ∈ GL(g,C), M ∈ Sp(2g,Z) and {vi} is a (not necessarily normalized) basis of
H1,0(C,C). Denote by Π =
(
A
B
)
the matrix of periods, where Aij =
∫
ai
vj and Bij =
∫
bi
vj .
Then τ = BA−1 and ω = vA−1. The identity
∮
σ∗γ
v =
∮
γ σ
∗v (for any γ ∈ H1(C,Z)) yields the
relation
MΠ = ΠL (5.3)
which restricts the period matrix τ . Now using (5.1) and (5.2) we have that (with L̂ = ALA−1,
so as to be working with normalized differentials))
2KQL̂ ≡
∫ 2∆
∗
σ∗ω − 2(g − 1)
∫ Q
∗
σ∗ω
which yields
2KQ
[
L̂− Id
]
≡
∫ σ(2∆)
2∆
ω − 2(g − 1)
∫ σ(Q)
Q
ω.
If KC is the divisor of a differential v then σ−1(KC) is the divisor of σ∗(v), whence the uniqueness
of the canonical class means that σ(KC) ∼ KC and consequently σ(2∆) ∼ 2∆. This shows that
we have an action of Aut(C) on the theta characteristics and
KQL̂ ≡ Kσ(Q) +
∫ σ(∆)
∆
ω,
the last integral also being a theta characteristic. We have then the identity on the Jacobian
2KQ
[
L̂− Id
]
≡ −2(g − 1)
∫ σ(Q)
Q
ω.
This then establishes
Lemma 1. Suppose the automorphism σ has order N > 1. If L − Id is invertible and Q is
a fixed point of σ then KQ is a 2N -torsion point.
Remark 1. We have the map π : C → C/〈σ〉. Any holomorphic differential on C/〈σ〉 pulls back
to an invariant differential on C, and so the assumption that L− Id is invertible is equivalent to
C/〈σ〉 ∼= P1.
Corollary 1. Assuming the conditions of Lemma 1 and that ψ ∈ Aut(C), then
∫ ψ(Q)
Q ω is
a 2N(g − 1)-torsion point.
Bring’s Curve: its Period Matrix and the Vector of Riemann Constants 17
Although these simple results do not necessarily give the best bound on the order of the
torsion point for the vectors involved, we see that, given a suitable symmetry and fixed point,
we have that KQ is a torsion point:
2KQA = nΠ [L− Id]−1 = n(M − Id)−1Π = n
(
1
N
N−1∑
k=1
kMk
)
Π.
The additional (we think) new idea we brought to this was to use some number theory associated
with M to restrict the form of KQ. Suppose there exist l, m ∈ Z2g such that
m = l(M − Id), (5.4)
then
mΠ = l(M − Id)Π = lΠ [L− Id]
and
(2KQA+ lΠ) [L− Id] = (n + m)Π ∈ Cg.
The idea is to use the freedom in choosing l here in (5.4) to make n + m as simple as possible;
as we are only interested in 2KQ modulo the lattice we will have further restricted the choice of
the vector of Riemann constants. For example, if m could be chosen arbitrarily then we could
make n + m = 0 and so 2KQ would be a lattice point. We implement the idea using the Smith
normal form of M − Id. Recall this means in the present context that we may write
M − Id = USV, S = Diag(d1, . . . , d2g), di|di+1, U, V ∈ GL(2g,Z).
The invertibility of L− Id means that di ≥ 1 and that (5.4) becomes
mV −1 = (lU)S.
Here we view l′ = lU as arbitrary and we are interested in the constraints this places on m.
We have (mV −1)i = l′idi and clearly the only constraints arise for di 6= 1. Given our earlier
observation that here di ≥ 1, we find that m is constrained only by(
mV −1
)
i
≡ 0 mod di, di > 1.
Thus, given a suitable symmetry and fixed point Q, the Smith normal form of M−Id enables us
to restrict the possible torsion points for 2KQ. Considering further automorphisms and making
use of Corollary 1 may yield further restrictions. The final step in evaluating KQ is the choice
of the appropriate half-period when taking the square root. This again may be restricted by the
symmetry but may also be decided numerically from the 22g half-periods.
5.3 Application to Bring’s curve
For Bring’s curve we find that everything follows from study of the single (order 5) automorphism
given in the Hulek–Craig representation by
φ : [x̄, ȳ, z̄] 7→
[
ζ2x̄, ζ4ȳ, z̄
]
.
This has fixed point [0, 0, 1], or Q = (0, 0) in affine coordinates.
18 H.W. Braden and T.P. Northover
The first and easiest calculation is deriving its action on the differentials. We fix the ordered
basis of (unnormalized) holomorphic differentials
v1 =
(ȳ3 − x̄)dx̄
∂yC(x̄, ȳ, 1)
, v2 =
(ȳ2x̄− 1)dx̄
∂yC(x̄, ȳ, 1)
, v3 =
(ȳ − x̄2)dx̄
∂yC(x̄, ȳ, 1)
, v4 =
ȳ(x̄2 − ȳ)dx̄
∂yC(x̄, ȳ, 1)
.
The construction of such holomorphic differentials is algorithmic (see [7]). It is easy to check
that
φ∗(v1) = ζv1, φ∗(v2) = ζ4v2, φ∗(v3) = ζ3v3, φ∗(v4) = ζ2v4,
and so φ∗vj = vkL
k
j where
L =
ζ 0 0 0
0 ζ4 0 0
0 0 ζ3 0
0 0 0 ζ2
.
Thus there is no invariant differential and L− Id and so L̂− Id are invertible. With Q = (0, 0)
we see the conditions of Lemma 1 are satisfied.
We note in passing that the differential v3 has a simple zero at a = [0, 0, 1], a double zero at
b = [0, 1, 0] and a triple triple zero at c = [1, 0, 0]2 ∼ [1, t, t4] for the required total of 2g− 2 = 6.
Thus we have KC ∼ a+ 2b+ 3c expressing the canonical divisor in terms of rational points of C.
To proceed with our strategy of determining KQ we first determine the action of φ on the
homology cycles. With the program extcurves at hand this is a simple computational matter,
complicated only slightly by the noncanonical nature of the paths we obtained in Section 4.4.
We obtain φ∗(γi) =
∑
jMijγj where
M =
0 0 0 1 0 0 0 0
−1 0 0 −1 0 0 0 0
0 −1 0 1 0 0 0 0
0 0 −1 −1 0 0 0 0
0 0 0 0 −1 1 −1 1
0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 −1 0
.
We remark that consideration of the equation (5.3) for this order five symmetry already imposes
that
AT =
a1 0 0 0
0 a2 0 0
0 0 a3 0
0 0 0 a4
1 −1− ζ4 1 + ζ4 + ζ3 ζ
1 −1− ζ 1 + ζ + ζ2 ζ4
1 −1− ζ2 1 + ζ2 + ζ4 ζ3
1 −1− ζ3 1 + ζ3 + ζ ζ2
,
for some unknown ai. These ai are related by the remaining symmetries and ultimately the
period matrix (1.1).
Continuing with our determination of KQ, calculating the Smith normal form of M − 1 gives
us unimodular matrices U , V such that
M − Id = U Diag(1, 1, 1, 1, 1, 1, 5, 5)V
and our earlier constraint (mV −1)i ≡ 0 mod di, di > 1 takes the form
−m5 +m6 −m7 − 4m8 ≡ 0 (mod 5),
Bring’s Curve: its Period Matrix and the Vector of Riemann Constants 19
−m1 + 2m2 − 3m3 −m4 − 11m5 + 6m6 −m7 − 34m8 ≡ 0 (mod 5).
This gives 25 possible unique candidates for 2KQ; we can vary ni arbitrarily (by adding an
appropriate l) without essentially changing 2KQ for (say) i = 2, 3, 4, 6, 7, 8 but then n1 and n5
are fixed. Explicitly, every 2KQ is equivalent to one generated by
n =
(
n1 0 0 0 n5 0 0 0
)
.
By considering a further symmetry we find further that n1 = n5 = 3 and at this stage we have
2KQ =
1
5
(
−12 −3 3 −3
)
+ τ0
(
−6 −6 3 0
)
.
To determining the appropriate 2-torsion point for square root of the canonical bundle one could
further study the action of the symmetries on the spin structures or simply numerically test the
vanishing of the theta function. The latter approach yields that
Theorem 3. For the Riera and Rodŕıguez homology basis of Bring’s curve we have that the
vector of Riemann constants is
KQ =
1
10
(
3 2 −2 −3
)
+ Im(τ0)
(
1 −2 −2 1
)
i,
where τ0 is defined by (4.3).
The transformation of theta characteristics
g · (a, b) = (a, b)g−1 +
1
2
(
diag
(
CDT
)
,diag
(
ABT
))
for any g =
(
A B
C D
)
∈ Sp(2g,Z) and characteristic (a, b) ∈ Q2g together with the explicit
representations of the symmetries yields
Theorem 4. Bring’s curve has a unique invariant spin-structure.
Remark 2. Klein’s curve has a unique invariant spin structure [14] and we have shown elsewhere
that the vector of Riemann constants is the Abel image of this. To show the analogous result
for Bring’s curve requires a better understanding of this spin-structure.
Acknowledgements
We are grateful to Maurice Craig for helpful email exchanges and also to an anonymous referee
for careful reading and suggested improvements to the paper.
References
[1] Berndt B.C., Ramanujan’s notebooks. Part III, Springer-Verlag, New York, 1991.
[2] Braden H.W., Northover T.P., Klein’s curve, J. Phys. A: Math. Theor. 43 (2010), 434009, 17 pages,
arXiv:0905.4202.
[3] Breuer T., Characters and automorphism groups of compact Riemann surfaces, London Mathematical Society
Lecture Note Series, Vol. 280, Cambridge University Press, Cambridge, 2000.
[4] Bujalance E., Etayo J.J., Gamboa J.M., Gromadzki G., Automorphism groups of compact bordered Klein
surfaces. A combinatorial approach, Lecture Notes in Mathematics, Vol. 1439, Springer-Verlag, Berlin, 1990.
[5] Craig M., A sextic Diophantine equation, Austral. Math. Soc. Gaz. 29 (2002), 27–29.
[6] Craig M., On Klein’s quartic curve, Austral. Math. Soc. Gaz. 31 (2004), 115–120.
http://dx.doi.org/10.1007/978-1-4612-0965-2
http://dx.doi.org/10.1088/1751-8113/43/43/434009
http://arxiv.org/abs/0905.4202
20 H.W. Braden and T.P. Northover
[7] Deconinck B., van Hoeij M., Computing Riemann matrices of algebraic curves, Phys. D 152/153 (2001),
28–46.
[8] Dye R.H., A plane sextic curve of genus 4 with A5 for collineation group, J. London Math. Soc. 52 (1995),
97–110.
[9] Edge W.L., Bring’s curve, J. London Math. Soc. 18 (1978), 539–545.
[10] Edge W.L., Tritangent planes of Bring’s curve, J. London Math. Soc. 23 (1981), 215–222.
[11] Farkas H.M., Kra I., Riemann surfaces, Graduate Texts in Mathematics, Vol. 71, Springer-Verlag, New York,
1980.
[12] Fay J.D., Theta functions on Riemann surfaces, Lecture Notes in Mathematics, Vol. 352, Springer-Verlag,
Berlin, 1973.
[13] Hulek K., Geometry of the Horrocks–Mumford bundle, in Algebraic Geometry, Bowdoin, 1985 (Brunswick,
Maine, 1985), Proc. Sympos. Pure Math., Vol. 46, Amer. Math. Soc., Providence, RI, 1987, 69–85.
[14] Kallel S., Sjerve D., Invariant spin structures on Riemann surfaces, Ann. Fac. Sci. Toulouse Math. (6) 19
(2010), 457–477, math.GT/0610568.
[15] Northover T.P., Riemann surfaces with symmetry: algorithms and applications, Ph.D. thesis, Edinburgh
University, 2011.
[16] Rauch H.E., Lewittes J., The Riemann surface of Klein with 168 automorphisms, in Problems in Analysis
(Papers Dedicated to Salomon Bochner, 1969), Princeton Univ. Press, Princeton, N.J., 1970, 297–308.
[17] Riera G., Rodŕıguez R.E., The period matrix of Bring’s curve, Pacific J. Math. 154 (1992), 179–200.
[18] Vinnikov V., Selfadjoint determinantal representations of real plane curves, Math. Ann. 296 (1993), 453–479.
[19] Weber M., Kepler’s small stellated dodecahedron as a Riemann surface, Pacific J. Math. 220 (2005), 167–
182.
http://dx.doi.org/10.1016/S0167-2789(01)00156-7
http://dx.doi.org/10.1112/jlms/52.1.97
http://dx.doi.org/10.1112/jlms/s2-18.3.539
http://dx.doi.org/10.1112/jlms/s2-23.2.215
http://arxiv.org/abs/math.GT/0610568
http://dx.doi.org/10.1007/BF01445115
http://dx.doi.org/10.2140/pjm.2005.220.167
1 Introduction
2 Two sextics
2.1 Dye's sextic
2.2 The Hulek–Craig sextic
3 Details of the Hulek-Craig curve
3.1 Special points of the Hulek–Craig representation and desingularisation
3.2 Branched covers of P1
3.3 Real paths on the Hulek-Craig curve
4 The Riera and Rodríguez hyperbolic model
4.1 Introduction to H
4.2 Riera and Rodríguez basis
4.3 Understanding the isomorphism f
4.4 Riera and Rodríguez basis algebraically
5 Vector of Riemann constants
5.1 The vector of Riemann constants
5.2 Symmetries and the vector of Riemann constants
5.3 Application to Bring's curve
References
|