Monodromy of an Inhomogeneous Picard-Fuchs Equation

The global behaviour of the normal function associated with van Geemen's family of lines on the mirror quintic is studied. Based on the associated inhomogeneous Picard-Fuchs equation, the series expansions around large complex structure, conifold, and around the open string discriminant are obt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2012
Hauptverfasser: Laporte, G., Walcher, J.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2012
Schriftenreihe:Symmetry, Integrability and Geometry: Methods and Applications
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/148409
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Monodromy of an Inhomogeneous Picard-Fuchs Equation / G. Laporte, J. Walcher // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 10 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-148409
record_format dspace
fulltext
spelling irk-123456789-1484092019-02-19T01:25:22Z Monodromy of an Inhomogeneous Picard-Fuchs Equation Laporte, G. Walcher, J. The global behaviour of the normal function associated with van Geemen's family of lines on the mirror quintic is studied. Based on the associated inhomogeneous Picard-Fuchs equation, the series expansions around large complex structure, conifold, and around the open string discriminant are obtained. The monodromies are explicitly calculated from this data and checked to be integral. The limiting value of the normal function at large complex structure is an irrational number expressible in terms of the di-logarithm. 2012 Article Monodromy of an Inhomogeneous Picard-Fuchs Equation / G. Laporte, J. Walcher // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 10 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 14C25; 14J33 DOI: http://dx.doi.org/10.3842/SIGMA.2012.056 http://dspace.nbuv.gov.ua/handle/123456789/148409 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The global behaviour of the normal function associated with van Geemen's family of lines on the mirror quintic is studied. Based on the associated inhomogeneous Picard-Fuchs equation, the series expansions around large complex structure, conifold, and around the open string discriminant are obtained. The monodromies are explicitly calculated from this data and checked to be integral. The limiting value of the normal function at large complex structure is an irrational number expressible in terms of the di-logarithm.
format Article
author Laporte, G.
Walcher, J.
spellingShingle Laporte, G.
Walcher, J.
Monodromy of an Inhomogeneous Picard-Fuchs Equation
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Laporte, G.
Walcher, J.
author_sort Laporte, G.
title Monodromy of an Inhomogeneous Picard-Fuchs Equation
title_short Monodromy of an Inhomogeneous Picard-Fuchs Equation
title_full Monodromy of an Inhomogeneous Picard-Fuchs Equation
title_fullStr Monodromy of an Inhomogeneous Picard-Fuchs Equation
title_full_unstemmed Monodromy of an Inhomogeneous Picard-Fuchs Equation
title_sort monodromy of an inhomogeneous picard-fuchs equation
publisher Інститут математики НАН України
publishDate 2012
url http://dspace.nbuv.gov.ua/handle/123456789/148409
citation_txt Monodromy of an Inhomogeneous Picard-Fuchs Equation / G. Laporte, J. Walcher // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 10 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT laporteg monodromyofaninhomogeneouspicardfuchsequation
AT walcherj monodromyofaninhomogeneouspicardfuchsequation
first_indexed 2025-07-12T19:23:34Z
last_indexed 2025-07-12T19:23:34Z
_version_ 1837470281883451392