Gender Specificity of Genistein Treatment in Penicillin-Induced Epileptiform Activity in Rats
We investigated gender-dependent differences of genistein (isoflavone phytoestrogen) treatment in a penicillin-induced experimental epilepsy rat model. Twenty-eight adult Wistar Albino rats (14 females and 14 males) were devided into four groups, control and genisteintreatmed males and females. Ge...
Збережено в:
Дата: | 2016 |
---|---|
Автори: | , , , , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут фізіології ім. О.О. Богомольця НАН України
2016
|
Назва видання: | Нейрофизиология |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/148440 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Gender Specificity of Genistein Treatment in Penicillin-Induced Epileptiform Activity in Rats / A. Bahadir, S. Demir, H. Orallar, E. Beyazcicek, A. Cetinkaya, S. Ankarali, H. Ankarali // Нейрофизиология. — 2016. — Т. 48, № 6. — С. 469-476. — Бібліогр.: 30 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-148440 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1484402019-02-19T01:30:58Z Gender Specificity of Genistein Treatment in Penicillin-Induced Epileptiform Activity in Rats Bahadir, A. Demir, S. Orallar, H. Beyazcicek, E. Cetinkaya, A. Ankarali, S. Ankarali, H. We investigated gender-dependent differences of genistein (isoflavone phytoestrogen) treatment in a penicillin-induced experimental epilepsy rat model. Twenty-eight adult Wistar Albino rats (14 females and 14 males) were devided into four groups, control and genisteintreatmed males and females. Genistein (100 µg/kg, i.p) or saline was given during 15 days before the electrocorticography (ECoG) recordings. The epileptiform activity was induced by penicillin G potassium solt (500 IU, i.c) injections into the left somatomotor cortex. Significant differences among the groups were found in the latency to onset of epileptiform activity. This value in the female control group was significantly longer than the latencies in the male control, male genistein, and female genistein groups (respectively, P = 0.002, 0.015, and 0.032). There were no significant differences regarding the spike/wave frequencies and amplitudes in epileptiform activity between female/male genistein and control groups within all observation intervals (P > 0.05). Thus, genistein exerts a proconvulsant effect in the penicillin-induced epilepsy model, and the effect demonstrates the clear gender specificity related to the specificity of hormonal backgrounds in males and females. Ми досліджували залежні від статі відмінності впливу ґеністеїну (ізофлавоноїдного фітоестрогена) в умовах індукованої пеніциліном експериментальної моделі епілепсії у щурів. 28 дорослих щурів лінії Вістар (14 самиць і 14 самців) були поділені на чотири групи – контрольних та лікованих ґеністеїном самців і самиць. Ґеністеїн (100 мкг/кг, внутрішньоочеревинно) або фізіологічний розчин уводився тваринам протягом 15 діб, після чого у них відводились електрокортикограма (ЕКоГ). Епілептиформна активність індукувалась ін’єкцією пеніциліну G калієвої солі (500 МО) в ліву соматомоторну кору. Істотні міжгрупові відмінності були виявлені щодо латентного періоду початку епілептиформної активності (P = 0.013). Ця величина в контрольній групі самиць була істотно більшою, ніж аналогічні значення в контрольній групі самців та групах самців і самиць, лікованих ґеністеїном (P = 0.002, 0.015 та 0.032 відповідно). Не було виявлено істотних відмінностей щодо частоти комплексів пік/хвиля та амплітуди епілептиформної активності у всіх чотирьох груп у межах інтервалу спостережень (P > > 0.05). Зроблено висновок, що ґеністеїн впливає на пеніцилініндуковану модель епілепсії як проконвульсант; відповідні ефекти демонструють значну гендерну специфіку, очевидно, залежну від гормонального фону в самців і самиць. 2016 Article Gender Specificity of Genistein Treatment in Penicillin-Induced Epileptiform Activity in Rats / A. Bahadir, S. Demir, H. Orallar, E. Beyazcicek, A. Cetinkaya, S. Ankarali, H. Ankarali // Нейрофизиология. — 2016. — Т. 48, № 6. — С. 469-476. — Бібліогр.: 30 назв. — англ. 0028-2561 http://dspace.nbuv.gov.ua/handle/123456789/148440 616.8:615.322 en Нейрофизиология Інститут фізіології ім. О.О. Богомольця НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We investigated gender-dependent differences of genistein (isoflavone phytoestrogen)
treatment in a penicillin-induced experimental epilepsy rat model. Twenty-eight adult Wistar
Albino rats (14 females and 14 males) were devided into four groups, control and genisteintreatmed males and females. Genistein (100 µg/kg, i.p) or saline was given during 15 days
before the electrocorticography (ECoG) recordings. The epileptiform activity was induced
by penicillin G potassium solt (500 IU, i.c) injections into the left somatomotor cortex.
Significant differences among the groups were found in the latency to onset of epileptiform
activity. This value in the female control group was significantly longer than the latencies in
the male control, male genistein, and female genistein groups (respectively, P = 0.002, 0.015,
and 0.032). There were no significant differences regarding the spike/wave frequencies and
amplitudes in epileptiform activity between female/male genistein and control groups within
all observation intervals (P > 0.05). Thus, genistein exerts a proconvulsant effect in the
penicillin-induced epilepsy model, and the effect demonstrates the clear gender specificity
related to the specificity of hormonal backgrounds in males and females. |
format |
Article |
author |
Bahadir, A. Demir, S. Orallar, H. Beyazcicek, E. Cetinkaya, A. Ankarali, S. Ankarali, H. |
spellingShingle |
Bahadir, A. Demir, S. Orallar, H. Beyazcicek, E. Cetinkaya, A. Ankarali, S. Ankarali, H. Gender Specificity of Genistein Treatment in Penicillin-Induced Epileptiform Activity in Rats Нейрофизиология |
author_facet |
Bahadir, A. Demir, S. Orallar, H. Beyazcicek, E. Cetinkaya, A. Ankarali, S. Ankarali, H. |
author_sort |
Bahadir, A. |
title |
Gender Specificity of Genistein Treatment in Penicillin-Induced Epileptiform Activity in Rats |
title_short |
Gender Specificity of Genistein Treatment in Penicillin-Induced Epileptiform Activity in Rats |
title_full |
Gender Specificity of Genistein Treatment in Penicillin-Induced Epileptiform Activity in Rats |
title_fullStr |
Gender Specificity of Genistein Treatment in Penicillin-Induced Epileptiform Activity in Rats |
title_full_unstemmed |
Gender Specificity of Genistein Treatment in Penicillin-Induced Epileptiform Activity in Rats |
title_sort |
gender specificity of genistein treatment in penicillin-induced epileptiform activity in rats |
publisher |
Інститут фізіології ім. О.О. Богомольця НАН України |
publishDate |
2016 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/148440 |
citation_txt |
Gender Specificity of Genistein Treatment in Penicillin-Induced Epileptiform Activity in Rats / A. Bahadir, S. Demir, H. Orallar, E. Beyazcicek, A. Cetinkaya, S. Ankarali, H. Ankarali // Нейрофизиология. — 2016. — Т. 48, № 6. — С. 469-476. — Бібліогр.: 30 назв. — англ. |
series |
Нейрофизиология |
work_keys_str_mv |
AT bahadira genderspecificityofgenisteintreatmentinpenicillininducedepileptiformactivityinrats AT demirs genderspecificityofgenisteintreatmentinpenicillininducedepileptiformactivityinrats AT orallarh genderspecificityofgenisteintreatmentinpenicillininducedepileptiformactivityinrats AT beyazciceke genderspecificityofgenisteintreatmentinpenicillininducedepileptiformactivityinrats AT cetinkayaa genderspecificityofgenisteintreatmentinpenicillininducedepileptiformactivityinrats AT ankaralis genderspecificityofgenisteintreatmentinpenicillininducedepileptiformactivityinrats AT ankaralih genderspecificityofgenisteintreatmentinpenicillininducedepileptiformactivityinrats |
first_indexed |
2025-07-12T19:28:31Z |
last_indexed |
2025-07-12T19:28:31Z |
_version_ |
1837470600455520256 |
fulltext |
NEUROPHYSIOLOGY / НЕЙРОФИЗИОЛОГИЯ.—2016.—T. 48, № 6 469
UDC 616.8:615.322
A. BAHADIR,1 S. DEMIR,2 H. ORALLAR,3 E. BEYAZCICEK,2
A. CETINKAYA,2 S. ANKARALI,2 AND H. ANKARALI4
GENDER SPECIFICITY OF GENISTEIN TREATMENT
IN PENICILLIN-INDUCED EPILEPTIFORM ACTIVITY IN RATS
Received December 25, 2015
We investigated genderdependent differences of genistein (isoflavone phytoestrogen)
treatment in a penicillininduced experimental epilepsy rat model. Twentyeight adult Wistar
Albino rats (14 females and 14 males) were devided into four groups, control and genistein
treatmed males and females. Genistein (100 µg/kg, i.p) or saline was given during 15 days
before the electrocorticography (ECoG) recordings. The epileptiform activity was induced
by penicillin G potassium solt (500 IU, i.c) injections into the left somatomotor cortex.
Significant differences among the groups were found in the latency to onset of epileptiform
activity. This value in the female control group was significantly longer than the latencies in
the male control, male genistein, and female genistein groups (respectively, P = 0.002, 0.015,
and 0.032). There were no significant differences regarding the spike/wave frequencies and
amplitudes in epileptiform activity between female/male genistein and control groups within
all observation intervals (P > 0.05). Thus, genistein exerts a proconvulsant effect in the
penicillininduced epilepsy model, and the effect demonstrates the clear gender specificity
related to the specificity of hormonal backgrounds in males and females.
Keywords: genistein, epileptiform activity, electrocorticography (ECoG), penicillin, rat.
1, 2, 4 Faculty of Medicine, Düzce University, Düzce, Turkey (1 Department of
Biophysics, 2 Department of Physiology, 4 Department of Biostatistics).
3 Department of Poultry Science and Technology, Faculty of Agriculture and
Natural Sciences, Abant Izzet Baysal University, Bolu, Turkey.
Correspondence should be addressed to A. Bahadir
(email anzelbahadir@duzce.edu.tr).
INTRODUCTION
Epilepsy is one of the most common neurological
diseases with a high incidence in the world. The disease
is based on changes in the neuronal excitation/inhibition
balance. It is usually characterized by the occurence
of prolonged recurrent and unprovoked seizures [1];
this is mostly related abnormal hypersynchronous
electrical activity of cerebral cortical neurons [2].
The development and manifestations of epileptiform
activity are, to a significant extent, based on alteration
of GABAergic transmission; it should be taken into
account that GABAergic transmission could be
responsible for both seizuresuppressing and seizure
promoting actions [3]. Despite extensive research
of epilepsy and the respective seizure mechanisms,
successful mechanismbased treatment approaches
have not been developed until now. Many researchers
examine and try to understand the pathogenesis of
epilepsy using different experimental epilepsy models,
including the penicillininduced epilepsy model [4, 5].
The mentioned disease is more complicated in
women compared to that in men; there are some
interactions between epileptic manifestations and the
level of female hormones [6, 7]. There are indication
that sex gonadal hormones of both females and males
exert significant effects on the neuronal excitability
and seizure suspectibility in epilepsy. Thus, effects
of gender specificity should be taken into account
in different experimental epilepsy models [7–9]. In
this context, some clinical and experimental studies
have been declared that estrogen hormones provide
proconvulsant effects, while progesterone exerts
an anticonvulsant effect on epileptic seizures [8–
10]. However, the data on the effects of estrogens
on epileptiform activity are controversial [9–13].
Results of both clinical and experimental studies
indicated that estrogens are mostly proconvulsant
effects [9–11], while others reports emphasized the
predominance of anticonvulsant effects [12, 13].
Opposite effects of estrogens may depend on many
factors, such as a hormone type, differences between
NEUROPHYSIOLOGY / НЕЙРОФИЗИОЛОГИЯ.—2016.—T. 48, № 6470
A. BAHADIR, S. DEMIR, H. ORALLAR, et al.
natural or synthetic hormone preparations, regional
distiribution of hormone receptors, treatment duration,
estrogen dose, hormonal status, regions of the nervous
or neurotransmitter systems involved, seizure type in
the model used, and sex [7, 13].
Phytoestrogens are rather similar in their effects to
animal estrogen; they can directly bind to estrogen
receptors (ERs) mainly ERb . These compounds
mimic estrogen functions in particular modulation of
gene expression. Isoflavone phytoestrogens can act
as agonists or antagonists of ERs. These substances
manifest estrogenic and/or antiestrogenic properties
owing to phenolic rings in the chemical structure of
their molecules. Genistein (4’, 5,7trihidroksiflovan)
is an isoflavone phytoestrogen; its main source are
soybeans. Isoflavones, particularly genistein and
daidzein, have agonist, with respect to estrogen,
effects; they selectively bind to ERs and mimick
some effects of estrogen [14]. Thus, these agents
were proposed to be used as an alternative to natural
compounds in estrogen replacement theraphy (ERT).
It was also shown that genistein exerts inhibitory
effects on protein tyrosine kinase (PTK), which plays
an important role in intracellular signal pathways,
via modulation of the functions of ion channels [15,
16]. Additionally, genistein was reported to exert a
negative regulatory effect on GABA activity [17].
The aim of our study was to investigate the effects
of genistein with special attention to genderdependent
differences in the action of this phytoestrogen,
observed in a penicillininduced experimental epilepsy
model in rats.
METHODS
Animals. Experiments were performed on 28 adult
Wistar albino rats (14 females and 14 males) weighing
300350 g. Animals were housed three to four per cage
under a 12 h light/dark cycle at room temperature of
2225°C and 4050% humidity, with free access to
water. The rats were kept at 8085% of their free
feeding body mass during the experiment.
Chemicals and Experimental Groups. Genistein
(> 97%) was purchased from Sigma Aldrich (USA) and
dissolved in dimethyl sulfoxide (DMSO). Booth ge-
nistein and saline (control) were given i.p. during a
15daylong treatment period in the genistein and sa-
line groups, respectively. The epileptiform activity was
induced by 2.5 µl intracortical penicillin G potassium
injection (500 IU, Sigma Chemical, USA) to all rats.
In our study, a relatively low dose (100 µg/kg, i.p.)
genistein not showing any cytotoxic and apoptotic
effects was used, as previously reported [18]. Animals
were divided into two main groups, male and female
ones (M and F). Each gender group was additionally
divided into two groups, control and genistein treated
(C and G). Thus, animals were randomly divided into
the following four equal groups (n = 7 in each), MC,
MG, FC, and FG.
Electrocorticography. All rats were anesthetized
with 1.2 g/kg urethane (Sigma Aldrich, USA, i.p) and
placed in a stereotaxic apparatus (Harvard Apparatus,
USA) before surgical operation. After controlling the
anesthesia depth, eye and claw reflexes were checked.
An incision (length 24 cm) was made on the skull
in the rostrocaudal direction. The left cerebral cortex
was exposed by craniotomy (2 mm posterior to the
bregma and 3 mm lateral to the sagittal line); bone
particles and dura mater were carefully removed.
Two Ag/AgCl ball electrodes were placed over the
left somatomotor cortex (first electrode, 2 mm lateral
to the sagittal suture and 1 mm anterior to bregma,
second electrode, 2 mm lateral to the suture and 5
mm posterior to the bregma). The common reference
electrode was fixed on the left pinna.
The ECoG activity was continuously monitored on a
recorder (PowerLab 8/SP, AD Instruments, Australia);
ECoG signals were amplified and filtered (0.150 Hz
bandpass) using BioAmp amplifiers (AD Instruments,
Australia) and digitized at a sampling rate 1024 sec–1
using a fourchannel data acquisition system (PowerLab
8/SP, AD Instruments, Australia). The baseline activity
in each group was recorded within the first 5 min.
After observation of basal activity within the
above interval, epileptiform activity was induced
by intracortical (i.c) injection of 2.5 µl penicillin G
potassium salt dissolved in sterile physiological saline
into the left sensorimotor cortex (2 mm posterior to
the bregma, 3 mm lateral to the sagittal suture, and
2 mm ventral to the brain surface) using a Hamilton
microinjector at the infusion rate 0.5 µl/min in all
rats. The ECoG activity was continuously recorded
during 180 min, displayed, digitized, and stored for
postexperimental computer analysis. The frequency
(min–1) and amplitude (µV) values of the spike/wave
complexes and the latency (sec) of onset of the first
spike/wave event in each animal were automatically
measured using a data acquisition Chart v. 6.0 system
(Power Lab software; AD Instruments, Pty Ltd.,
Australia) and analyzed offline.
Statistical Analysis. The epileptiform activity was
NEUROPHYSIOLOGY / НЕЙРОФИЗИОЛОГИЯ.—2016.—T. 48, № 6 471
GENDER SPECIFICITY OF GENISTEIN TREATMENT
analyzed after numerical conversion within every
10minlong interval during 180 min recording. The
abovementioned ECoG parameters were gathered from
all groups, and these values were analyzed using PASW
package (ver. 18). Descriptive values were computed
as means ± s. d. and medians. The KruskalWallis test
was used for comparing each group with respect to the
spikewave latency, frequency, and amplitude within
each period. In addition, the posthoc Dunn’s test
followed the KruskalWallis test were used. Bonferroni
corrected P values were used for comparing these
indices among different groups. The P < 0.05 values
were considered to be statistically significant.
RESULTS
Effects of Genistein on Penicillin G-Induced
Epileptiform Activity. The epileptiform activity
characterized by spikes and spikewave complexes
started 25 min after penicillin injection, reached
constant levels of the frequency and amplitude in 30
min, and lasted for 35 h (Fig. 1). Data comprising
the mean spike/wave frequency and amplitude values
and latencies to onset of epileptiform activity in all
experimental groups during a 180minlong recording
period following penicillin injection are presented as
Fig. 1.
F i g. 1. Examples of ECoG activity before (A) and after (B–E) penicillin G injections in different experimental groups.
Р и с. 1. Приклади ЕКоГ активності перед ін’єкцією пеніциліну G (А) та після такої ін’єкції (B–E) в чотирьох досліджених групах.
T a b l e 1. Values of the Latency, sec (Onset Time of the First Epileptic Phenomenon) in the Experimental Groups
Т а б л и ц я 1. Середні значення латентного періоду першого епізоду епілептичної активності в експериментальних групах
Groups N Mean Median s.d. Minumum Maximum Pvalue
Male control 7 445.86 358.00 193.15 240.00 801.00
0.013Male genistein 7 419.71 446.00 51.41 330.00 468.00
Female control 7 649.00 660.00a,b,c 150.17 480.00 903.00
Female genistein 7 456.85 480.00 71.61 300.00 510.00
n – number of examined rats; s.d. – standard deviation; a – female control group compared with female genistein (P < 0.032);
b – fe male control group compared with male control (P < 0.015). c – female control group compared with male genistein (P < 0.002).
A
B
C
D
E
NEUROPHYSIOLOGY / НЕЙРОФИЗИОЛОГИЯ.—2016.—T. 48, № 6472
A. BAHADIR, S. DEMIR, H. ORALLAR, et al.
F i g. 2. Median latencies (sec) in the experimental groups.
a) female control group compared with female genistein (P < 0.032).
b) female control group compared with male control (P < 0.015).
c) female control group compared with male genistein (P < 0.002).
Р и с. 2. Медіанні значення латентного періоду першого
комплексу пік/хвиля в експериментальних групах.
T a b l e 2. Values of the Frequency of the Spike/Wave Complexes in the Experimental Groups vithin the Observation Period
Т а б л и ц я 2. Частота комплексів пік/хвиля в експериментальних групах протягом періоду спостереження
Time,
min
Male control Male genistein Female control Female genistein P value
Mean ± s.d. Median Mean ± s.d. Median Mean ± s.d. Median Mean ± s.d. Median
10 82.6 ± 106.9 26.0 35.9 ± 38.2 33.0 33.1 ± 43.9 31.0 67.7 ± 134.0 19.0 0.855
20 201.1 ± 170.6 174.0 202.3 ± 188.9 242.0 207.0 ± 177.3 207.0 163.3 ± 152.4 127.0 0.975
30 229.9 ± 140.8 177.0 196.7 ± 143.5 155.0 205.9 ± 121.0 278.0 222.9 ± 143.1 268.0 0.956
40 253.3 ± 150.2 271.0 239.9 ± 147.6 239.0 302.9 ± 86.7 304.0 340.9 ± 94.9 352.0 0.406
50 282.3 ± 113.1 236.0 270.3 ± 152.3 231.0 276.4 ± 102.8 269.0 378.3 ± 121.1 367.0 0.314
60 304.0 ± 102.2 248.0 264.9 ± 153.5 221.0 237.7 ± 66.1 258.0 362.3 ± 148.3 344.0 0.341
70 286.9 ± 77.5 286.0 295.6 ± 124.6 283.0 213.1 ± 72.0 216.0 335.0 ± 143.3 347.0 0.231
80 270.6 ± 42.7 279.0 294.3 ± 153.5 216.0 228.7 ± 78.4 255.0 323.3 ± 176.4 302.0 0.639
90 250.4 ± 42.8 256.0 287.1 ± 162.5 188.0 235.0 ± 86.4 240.0 295.3 ± 175.3 274.0 0.922
100 219.3 ± 91.2 228.0 217.7 ± 158.5 175.0 316.4 ± 126.3 266.0 244.1 ± 110.9 224.0 0.551
110 197.4 ± 90.1 210.0 238.9 ± 175.2 169.0 306.4 ± 149.2 291.0 228.7 ± 87.0 185.0 0.623
120 173.3 ± 89.9 178.0 194.7 ± 116.8 168.0 306.7 ± 161.7 261.0 197.9 ± 94.4 179.0 0.291
130 154.0 ± 74.2 168.0 183.9 ± 94.2 147.0 266.7 ± 147.9 257.0 167.6 ± 70.5 206.0 0.376
140 154.9 ± 94.7 170.0 252.1 ± 148.2 182.0 269.0 ± 140.6 240.0 150.1 ± 79.9 176.0 0.223
150 164.1 ± 97.0 183.0 245.6 ± 166.9 188.0 243.1 ± 142.6 188.0 159.6 ± 60.6 183.0 0.645
160 136.7 ± 71.2 151.0 230.6 ± 155.2 175.0 201.9 ± 115.1 159.0 150.4 ± 54.0 151.0 0.632
170 162.3 ± 93.8 167.0 226.9 ± 165.3 169.0 231.9 ± 136.2 193.0 153.3 ± 49.9 155.0 0.772
180 132.6 ± 72.6 146.0 145.7 ± 89.9 168.0 185.4 ± 118.4 155.0 135.4 ± 71.1 132.0 0.958
F o o t n o t e: all intergroup differences did not reach the level of significance within all time periods.
We was mentioned, we used a low dose of genistein
(100 µg/kg) in both female and male treated groups
(FC and MC) which was determined in the previous
study [18]. There was significant difference (P =
= 0.013) observed between the values of the median
latency (sec) to the first epileptic event among the
experimental (G) and control (C) groups. Additionally,
the median latency value in the FC group was
significantly longer than the median latency in the
MC, MG, and FG groups (respectively, P = 0.002,
0.015, and 0.032; Fig. 2, Table 1). In other words,
genistein manifested a clear proconvulsant effect by
lowering the threshold of onset of epileptic seizures.
At the same time, shortening of the latency on the
epileptic activity induced with penicillin was observed
in the female group (FG) only.
At the same time, no significant differences were
found regarding the median spike/wave frequency
(min–1) and median amplitude (µV) values of the
epileptiform activity all examined groups (both
gender and genistein/control) within all time periods
(P > 0.05). It should be, however, mentioned that
the respective intergroup differences of all indices,
confirming the conclusion on the proconvulsant effect
of ginesteine (while not reaching the significance
level), were quite clear (Figs. 3, 4; Tables 2, 3).
NEUROPHYSIOLOGY / НЕЙРОФИЗИОЛОГИЯ.—2016.—T. 48, № 6 473
GENDER SPECIFICITY OF GENISTEIN TREATMENT
T a b l e 3. Values of the Spike/Wave Amplitudes (µV) in the Experimental Groups vithin the Observation Period
Т а б л и ц я 3. Значення амплітуд (мкВ) комплексів пік/хвиля в експериментальних групах протягом періоду спостереження
Time
(min)
Male control Male genistein Female control Female genistein P value
Mean ± s.d. Median Mean ± s.d. Median Mean ± s.d. Median Mean ± s.d. Median
10 1346.1 ± 700.7 1406.0 1454.7 ± 743.4 1633.9 1290.0 ± 758.0 1604.1 1655.9 ± 660.8 2006.6 0.780
20 1653.9 ± 443.0 1854.8 1276.9 ± 590.2 1210.5 1632.3 ± 574.9 2048.0 1641.1 ± 285.5 1695.3 0.401
30 1357.8 ± 544.6 1298.2 1360.5 ± 483.4 1221.0 1433.9 ± 468.6 1470.4 1545.3 ± 380.5 1677.0 0.876
40 1374.8 ± 451.7 1588.5 1434.9 ± 475.6 1394.2 1807.8 ± 329.6 2043.3 1817.1 ± 246.5 1803.0 0.094
50 1518.5 ± 450.2 1355.9 1375.5 ± 350.7 1321.7 1745.0 ± 294.9 1633.2 1799.1 ± 264.0 1810.0 0.078
60 1588.4 ± 423.5 1488.0 1316.0 ± 265.3 1291.7 1732.7 ± 255.9 1597.0 1850.9 ± 240.0 2013.7 0.084
70 1549.5 ± 478.7 1407.6 1446.4 ± 368.9 1300.9 1688.6 ± 302.7 1641.3 1787.4 ± 275.1 1748.3 0.221
80 1552.5 ± 458.0 1508.7 1447.5 ± 427.2 1261.0 1801.0 ± 250.7 1744.5 1729.7 ± 326.2 1724.0 0.126
90 1519.0 ± 495.8 1613.8 1451.9 ± 454.2 1280.2 1683.8 ± 285.3 1677.7 1673.9 ± 392.7 1758.3 0.731
100 1470.3 ± 550.5 1731.3 1668.9 ± 499.1 2047.8 1761.8 ± 299.8 1790.8 1561.1 ± 281.9 1676.8 0.536
110 1425.2 ± 594.2 1738.0 1463.6 ± 596.8 1329.5 1696.1 ± 262.5 1625.8 1483.7 ± 274.6 1549.1 0.817
120 1403.9 ± 600.0 1745.4 1496.2 ± 547.4 1326.2 1667.7 ± 351.4 1806.6 1418.7 ± 258.9 1482.8 0.651
130 1298.7 ± 636.8 1549.4 1555.8 ± 474.8 1334.0 1625.0 ± 396.0 1788.7 1588.0 ± 425.6 1651.7 0.758
140 1334.1 ± 723.8 1738.0 1427.6 ± 449.3 1261.0 1646.4 ± 351.6 1677.7 1471.8 ± 475.2 1308.9 0.700
150 1330.4 ± 672.5 1745.4 1444.7 ± 467.4 1280.2 1610.3 ± 395.3 1592.5 1532.1 ± 504.9 1530.8 0.897
160 1458.8 ± 636.6 1588.6 1510.1 ± 531.2 1323.9 1557.1 ± 431.1 1614.9 1510.6 ± 478.7 1549.1 0.971
170 1493.5 ± 711.3 1794.2 1499.0 ± 552.7 1329.5 1558.6 ± 435.8 1611.7 1525.6 ± 454.4 1533.9 0.964
180 1346.1 ± 700.7 1406.0 1454.7 ± 743.4 1633.9 1290.0 ± 758.0 1604.1 1655.9 ± 660.8 2006.6 0.878
F o o t n o t e: all intergroup differences did not reach the level of significance within all time periods.
F i g. 3. Dynamics of the medians
of the spike/wave frequency (min–1)
in different experimental groups
within the observation period.
Columns 1–4, male control, male
genistein, female control, female
genistein groups, respectively.
Р и с. 3. Динаміка медіанних зна-
чень частоти комплексів пік/хви-
ля (хв–1) в експериментальних
групах.
F i g. 4. Dynamics of the medians
of the spike/wave amplitude (μV)
in different experimental groups
within the observation period.
Designations are similar to those as
in Fig. 3.
Р и с. 4. Динаміка медіанних зна-
чень амплітуди комплексів пік/
хвиля (мкВ) в експерименталь-
них групах.
min–1
123 4
min
μV
123 4
NEUROPHYSIOLOGY / НЕЙРОФИЗИОЛОГИЯ.—2016.—T. 48, № 6474
A. BAHADIR, S. DEMIR, H. ORALLAR, et al.
DISCUSSION
Estrogens and phytoestrogens regulate the neuronal
excitability by either their influence on the release of
neurotransmitters from presynaptic terminals (such
as acetylcholine, dopamine, GABA, and glycine)
or direct effects on different ion channels in the
postsynaptic membrane structures. Moreover, it has
been reported that these hormones influence both the
seizure threshold and frequency of epileptic activity [7,
9]. Also, sex gonadal hormones have different effects
according to sexdependent differential influences on
the severity of seizures in experimental rat models
[1012]. It has been indicated that phytoestrogens of
the soy extract may mimic the estrogen proconvulsant
effect in a PTZinduced seizure model. Both low and
high doses of soy extract treatment affected the seizure
severity in the model, but their effects were different
in the presence or absence of ovarian hormones [19].
Genistein, a relatively selective ER bagonist, is an
isoflavone phytoestrogenic molecule; its structure is
rather similar to 17bestradiol [20]. It exhibits PTK
activity; this enzyme plays important roles in many
cellular processes, as was shown in in vivo and in vitro
studies [15, 16]. It was reported that genistein exerts
neuroprotective effects against neurodegenerative
diseases [21, 22]. In addition, genistein was described
as an effective agent in both prophylaxis and treatment
of hormonedependent cancers, in particular, those
of breast and endometrium [23]. Accordingly, many
studies suggested that genistein may be used as an
alternative to ERT; it reproduces the neuroprotective
effect of estrogen without cancerpromoting adverse
effects of the latter [24, 25]. However, the mechanisms
of the effects of genistein on epileptic activity have
not been finally determined until now.
Our study was performed to investigate the effects
of genistein in penicillininduced epilepsy model and
to evaluate possible genderdependent differences.
To our knowledge, this is the first study to address
changes of the epileptiform activity after genistein
treatment to female and male rats in the above
mentioned epilepsy model.
Genistein penetrates the bloodbrain barrier in a
dosedependent manner, and can be defined in the
brain tissue. It’s concentration in this tissue was
found to be lower than the levels observed in other
tissues [26, 27]. In our study, genistein was given
during 15 days to the female and male treated rat
groups before cortical injections of penicillin G that
induced epileptiform activity. We took into account
that genistein shows a relatively low penetration rate
through the bloodbrain barrier. Thus, our results
illustrate chronic effects of small doses of genistein
in experimental epilepsy model. Genistein can be
dissolved in various solvents, such as DMSO, ethanol,
propylene glycol, olive oil, or sesame oil, and this also
can affect the obtained experimental results.
We found that genistein facilitated the onset of
epilepsy in female group (FG) of the rat model, and we
used DMSO as solvent for genistein. Besides, Choi and
Lee [18] demonstrated that chronic administration of
high doses of genistein (20 mg/day) induced cytotoxic
effects and apoptosis, while low doses of genistein
(2 mg/day) had no cytotoxic effect in the rat cerebral
tissue. Considering this, in the present study we used
a rather low dose (100 µg/kg) of genistein showing no
cytotoxic and apoptotic effects according [18].
In our study, we observed significant differences in
the latency to onset of epileptiform activity among all
female and male genistein/control groups. We found
that low dose genistein treatment facilitated starting of
epileptiform seizures but only in a female group (FG),
while such treatment did not changed significantly
the onset time of first epileptic manifestation in the
male group (MG). In other words, the latency in the
FG group was significantly shorter than that in both
male groups (MC and MG) and female control group
(FC). The proconvulsant effect of genistein arises
from its estrogenlike activity, and these findings
may be related to two possible mechanisms. Genistein
may exert a negative regulatory effect on the GABA
system activity [17]. Other mechanism may be the
following; flavonoids like genistein partly inhibit
acetylcholinestherase. Thus, it delays degradation of
the respective neurotransmitter [28]. We think that the
proconvulsant effect of genistein may result from both
above reasons.
Furthermore, in the present study, genistein
treatment did not demonstrate significant differences
with regard to the spike/wave frequency or amplitude
values between both female and male rats, while the
respective trends were noticeable. These results may
arise from interaction of three different mechanisms.
The first one may be based on inhibition of voltage
gated sodium currents by genistein. This was shown
in rat superior cervical ganglion (SCG) neurons
and realized through PTKdependent and kinase
independent signal pathways [15]. Thus, genistein
suppress the neuronal excitability by reducing
the depolarization rate in neuronal units. The
second mechanism may be due to changes in the
NEUROPHYSIOLOGY / НЕЙРОФИЗИОЛОГИЯ.—2016.—T. 48, № 6 475
GENDER SPECIFICITY OF GENISTEIN TREATMENT
depolarization state of the cell by estrogeninduced
blocking of Na+,K+ATPase pump activity. It was
reported that functioning of this pump is significantly
increased under conditions of an estrogen deficiency
in ovariectomized rats [29]. The third mechanism
may arise from the formation of membrane
hyperpolarization resulting from an increase in ATP
dependent potassium channel (KATP) activity related to
estrogen effect in neuronal cells [30]. We believe that
the absence of significant differences in the genistein
effects on the frequency and amplitude ECoG values,
observed in our studies, are determined by a combined
nature of the nature of genistein effects and complex
interactions between the factors of this treatment in
both female and male groups. Further research is
needed of explain the exact reason observed pattern
of proconvulsant effects of genistein observed in our
experiments.
Our study, naturally, has a number of considerable
limitations. We did not study the dosedependence
of genistein treatments in noncytotoxic doses and
the influence of different solvents. Additionally,
female rats were tested randomly for epileptic activity
regardless of their ovulation cycle stage. Individual
hormonal cycle stages may play a significant role
in seizure susceptibility. One another disadvantage
was that we had no data on the effects of genistein
depending of the level of ovarian hormones. In
further research, application of genistein under
various estrogen conditions (females, i.e., standard
estrogen condition, males, i.e., naturally lowestrogen
condition, and ovariectomized rats, artificially induced
estrogen deficiency) is expedient. We did not examine
the relationship between the effects of genistein
and hormone levels such as estradiol (E2), and
progesterone (P4) contents, in the rat plasma, as well
as interrelations of these indices with epileptiform
activity.
In any case, we suggest that genistein, according to
the results of our study, may not be a good candidate
in ERT, because it can noticeably increase the epileptic
seizure susceptibility in female individuals.
This research received no specific grant from any funding
agency in the public, commercial or notforprofit sectors.
All experimental protocols were in agreement with
the Ethics Committe guidelines of the Abant Izzet Baysal
University and also in accordance with the statements of the
Guide for Care and Use of Laboratory Animals of the National
Institutes of Health University (Decision No: 2014/08).
The authors of this study, A. Bahadir, S. Demir, H. Orallar,
E. Beyazcicek, A. Cetinkaya, S. Ankarali, and H. Ankarali,
confirm that the research and publication of the results were not
associated with any conflicts regarding commercial or financial
relations, relations with organizations and/or individuals who
may have been related to the study, and interrelations of co
authors of the article.
А. Бахадір1, С. Демір2, Х. Ораллар3, Е. Бейязчікек2,
А. Четінкайя2, С. Анкаралі2, Х. Анкаралі4
ГЕНДЕРНІ ВІДМІННОСТІ ВПЛИВІВ ҐЕНІСТЕЇНУ НА
ІНДУКОВАНУ ПЕНІЦИЛІНОМ ЕПІЛЕПТИФОРМНУ
АКТИВНІСТЬ У ЩУРІВ
1,2,4 Університет Дюздже (1 відділ біофізики медичного фа-
культету, 2 відділ фізіології медичного факультету, 4 відділ
біостатистики медичного факультету) (Туреччина).
3 Університет Абант Іззет Байсал, Болу (Туреччина).
Р е з ю м е
Ми досліджували залежні від статі відмінності впливу ґе-
ністеїну (ізофлавоноїдного фітоестрогена) в умовах інду-
кованої пеніциліном експериментальної моделі епілепсії у
щурів. 28 дорослих щурів лінії Вістар (14 самиць і 14 сам-
ців) були поділені на чотири групи – контрольних та ліко-
ваних ґеністеїном самців і самиць. Ґеністеїн (100 мкг/кг,
внутрішньоочеревинно) або фізіологічний розчин уводив-
ся тваринам протягом 15 діб, після чого у них відводились
електрокортикограма (ЕКоГ). Епілептиформна активність
індукувалась ін’єкцією пеніциліну G калієвої солі (500 МО)
в ліву соматомоторну кору. Істотні міжгрупові відмінності
були виявлені щодо латентного періоду початку епілепти-
формної активності (P = 0.013). Ця величина в контрольній
групі самиць була істотно більшою, ніж аналогічні значення
в контрольній групі самців та групах самців і самиць, ліко-
ваних ґеністеїном (P = 0.002, 0.015 та 0.032 відповідно). Не
було виявлено істотних відмінностей щодо частоти комп-
лексів пік/хвиля та амплітуди епілептиформної активності
у всіх чотирьох груп у межах інтервалу спостережень (P >
> 0.05). Зроблено висновок, що ґеністеїн впливає на пені-
цилініндуковану модель епілепсії як проконвульсант; відпо-
відні ефекти демонструють значну гендерну специфіку, оче-
видно, залежну від гормонального фону в самців і самиць.
REFERENCES
1. A. K. Ngugi, S. M. Kariuki, C. Bottomley, et al., ‘‘Incidence
of epilepsy,’’ Neurology, 77, No. 10, 10051012 (2011).
2. R. S. Fisher, C. Acevedo, A. Arzimanoglou, et al., ‘‘ILAE
official report: A practical clinical definition of epilepsy,’’
Epilepsia, 55, No. 4, 475482 (2014).
3. K. Kaila, E. Ruusuvuori, P. Seja, et al., ‘‘GABA actions and
ionic plasticity in epilepsy,’’ Current Opin. Neurobiol., 26, 34
41 (2014).
NEUROPHYSIOLOGY / НЕЙРОФИЗИОЛОГИЯ.—2016.—T. 48, № 6476
A. BAHADIR, S. DEMIR, H. ORALLAR, et al.
4. M. E. Garcia Garcia, I. Garcia Morales, and J. Matías Guiu,
‘‘Experimental models in epilepsy,’’ Neurologia, 25, 3181
3188 (2010).
5. A. Bahadir, S. Demir, H. Orallar, et al., ‘‘Effects of an extract
of Salvia Miltiorrhiza on a penicillininduced epilepsy model
in rats,’’ Neurophysiology, 47, No. 3, 218224 (2015).
6. J. Bauer, ‘‘Interactions between hormones and epilepsy in
female patients,’’ Epilepsia, 42, Suppl. 3, 2022 (2001).
7. J. Velíšková and K. A. DeSantis, ‘‘Sex and hormonal influences
on seizures and epilepsy,’’ Hormon. Behav., 63, No. 2, 267277
(2013).
8. D. S. Reddy, D. C. Castaneda, B. W. O’Malley, and M. A. Ro
gawski, ‘‘Anticonvulsant activity of progesterone and neuro
steroids in progesterone receptor knockout mice,’’ J. Pharma
col. Exp. Ther., 310, No. 1, 230239 (2004).
9. H. E. Scharfman and N. J. MacLusky, ‘‘The influence of
gonadal hormones on neuronal excitability, seizures, and
epilepsy in the female,’’ Epilepsia, 47, No. 9, 14231440
(2006).
10. A. Ahmad and D. Vohora, ‘‘Proconvulsant effects of estriol, the
third estrogen, in mouse PTZkindling model,’’ Neurol. Sci.,
35, No. 10, 15611566 (2014).
11. A. Verrotti, G. Lattini, R. Manco, et al., ‘‘Influence of sex
hormones on brain excitability and epilepsy,’’ J. Endocrinol.,
30, No. 9, 797803 (2007).
12. M. Pereira, J. M. Soares, S. G.Valente, et al., ‘‘Estrogen
effects on pilocarpineinduced temporal lobe epilepsy in rats,’’
Maturitas, 62, No. 2, 190196 (2009).
13. J. Velíšková, ‘‘Estrogens and epilepsy: why are we so excited?’’
Neuroscientist, 13, No. 1, 7788 (2007).
14. S. O. Mueller, S. Simon, K. Chae, et al., ‘‘Phytoestrogens
and their human metabolites show distinct agonistic and
antagonistic properties on estrogen receptor alpha (ERalpha)
and ERbeta in human cells,’’ Toxicol. Sci., 80, No. 1, 1425
(2004).
15. Z. Jia, Y. Jia, B. Liu, et al., ‘‘Genistein inhibits voltage
gated sodium currents in SCG neurons through protein tyrosine
kinasedependent and kinaseindependent mechanisms,’’
Pflügers Arch.– Eur. J. Physiol., 456, No. 5, 857866 (2008).
16. G. R.Yan, C. L.Xiao, G. W. He, et al . , ‘‘Global
phosphoproteomic effects of natural tyrosine kinase inhibitor,
genistein, on signaling pathways,’’ Proteomics, 10, No. 5, 976
986 (2010).
17. R. Q. Huang, M. J. Fang, and G. H. Dillon, ‘‘The tyrosine
kinase inhibitor genistein directly inhibits GABA receptors,’’
Mol. Brain Res., 67, No. 1, 177183 (1999).
18. E. J. Choi and B. H. Lee, ‘‘Evidence for genistein mediated
cytotoxicity and apoptosis in rat brain,’’ Life Sci., 75, No. 4,
499509 (2004).
19. T. Mohammadpour, M. Hosseini, R. Karami, et al., ‘‘Estrogen
dependent effect of soy extract on pentylenetetrazolinduced
seizures in rats,’’ Chin. J. Integr. Med., 10, No. 12, 61116118
(2012).
20. E. D. Lephart, K. D.Setchell, R. J. Handa, and T. D. Lund,
‘‘Behavioral effects of endocrinedisrupting substances:
phytoestrogens,’’ ILAR J., 45, No. 4, 443454 (2004).
21. M. Bagheri, M. T. Joghataei, S. Mohseni, and M. Rog
hani,‘‘Genistein ameliorates learning and memory deficits in
amyloid β(1–40) rat model of Alzheimer’s disease,’’ Neurobiol.
Learn Memory, 95, No. 3, 270276 (2011).
22. A. B. Aras, M. Guven, T. Akman, et al., ‘‘Genistein exerts
neuroprotective effect on focal cerebral ischemia injury in
rats,’’ Inflammation, 38, No. 3, 13111321 (2014).
23. D. T. Zava and G. Duwe,‘‘Estrogenic and antiproliferative
properties of genistein and other flavonoids in human breast
cancer cells in vitro,’’ Nutr. Cancer, 27, No. 1, 3140 (1997).
24. J. Xu, J. Zhu, C. Shi, et al., ‘‘Effects of genistein on
hippocampal neurodegeneration of ovariectomized rats,’’ J.
Mol. Neurosci., 31, No. 2, 101112 (2007).
25. O. Y. Bang, H. S. Hong, D. H. Kim, et al., ‘‘Neuroprotective
effec t of genis te in aga ins t be ta amyloid induced
neurotoxicity,’’ Neurobiol. Dis.,16, No. 1, 2128 (2004).
26. T. H. Tsai, ‘‘Concurrent measurement of unbound genistein
in the blood, brain and bile of anesthetized rats using
microdialysis and its pharmacokinetic application,’’ J.
Chromatogr. Ser. A, 1073, Nos. 1/2, 317322 (2005).
27. H. C. Chang, M. I. Churchwell, K. B. Delclos, et al., ‘‘Mass
spectrometric determination of genistein tissue distribution in
diet exposed SpragueDawley rats,’’ J. Nutr., 130, No. 8, 1963
1970 (2000).
28. I. Orhan, M. Kartal, F. Tosun, and B. Sener, ‘‘Screening of
various phenolic acids and flavonoid derivatives for their anti
cholinesterase potential,’’ Zeitschrift. Naturforsch. Ser. C, 62,
Nos. 11/12, 829832 (2007).
29. V. Mackedanz, C. B. Mattos, L. R. Feksa, et al., ‘‘Ovariectomy
alters energy metabolism in rat str iatum: effect of
supplementation with soy diet rich in isoflavones,’’ Metab.
Brain Dis., 26, No. 2, 97105 (2011).
30. C. Zhang, M. J. Kelly, and O. K. Rønnekleiv, ‘‘17bestradiol
rapidly increases KATP activity in GnRH via a protein kinase
signaling pathway,’’ Endocrinology, 151, No. 9, 44774484
(2010).
|