High-Energy String Scattering Amplitudes and Signless Stirling Number Identity
We give a complete proof of a set of identities (7) proposed recently from calculation of high-energy string scattering amplitudes. These identities allow one to extract ratios among high-energy string scattering amplitudes in the fixed angle regime from high-energy amplitudes in the Regge regime. T...
Gespeichert in:
Datum: | 2012 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут математики НАН України
2012
|
Schriftenreihe: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/148459 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | High-Energy String Scattering Amplitudes and Signless Stirling Number Identity / J. Lee, C.H. Yan, Y. Yang // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 29 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineZusammenfassung: | We give a complete proof of a set of identities (7) proposed recently from calculation of high-energy string scattering amplitudes. These identities allow one to extract ratios among high-energy string scattering amplitudes in the fixed angle regime from high-energy amplitudes in the Regge regime. The proof is based on a signless Stirling number identity in combinatorial theory. The results are valid for arbitrary real values L rather than only for L=0,1 proved previously. The identities for non-integer real value L were recently shown to be realized in high-energy compactified string scattering amplitudes [He S., Lee J.C., Yang Y., arXiv:1012.3158]. The parameter L is related to the mass level of an excited string state and can take non-integer values for Kaluza-Klein modes. |
---|