High-Energy String Scattering Amplitudes and Signless Stirling Number Identity

We give a complete proof of a set of identities (7) proposed recently from calculation of high-energy string scattering amplitudes. These identities allow one to extract ratios among high-energy string scattering amplitudes in the fixed angle regime from high-energy amplitudes in the Regge regime. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2012
Hauptverfasser: Lee, J., Yan, C.H., Yang, Y.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2012
Schriftenreihe:Symmetry, Integrability and Geometry: Methods and Applications
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/148459
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:High-Energy String Scattering Amplitudes and Signless Stirling Number Identity / J. Lee, C.H. Yan, Y. Yang // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 29 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:We give a complete proof of a set of identities (7) proposed recently from calculation of high-energy string scattering amplitudes. These identities allow one to extract ratios among high-energy string scattering amplitudes in the fixed angle regime from high-energy amplitudes in the Regge regime. The proof is based on a signless Stirling number identity in combinatorial theory. The results are valid for arbitrary real values L rather than only for L=0,1 proved previously. The identities for non-integer real value L were recently shown to be realized in high-energy compactified string scattering amplitudes [He S., Lee J.C., Yang Y., arXiv:1012.3158]. The parameter L is related to the mass level of an excited string state and can take non-integer values for Kaluza-Klein modes.