Singular Isotonic Oscillator, Supersymmetry and Superintegrability
In the case of a one-dimensional nonsingular Hamiltonian H and a singular supersymmetric partner Hα, the Darboux and factorization relations of supersymmetric quantum mechanics can be only formal relations. It was shown how we can construct an adequate partner by using infinite barriers placed where...
Збережено в:
Дата: | 2012 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2012
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/148465 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Singular Isotonic Oscillator, Supersymmetry and Superintegrability / I. Marquette // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 47 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-148465 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1484652019-02-19T01:25:46Z Singular Isotonic Oscillator, Supersymmetry and Superintegrability Marquette, I. In the case of a one-dimensional nonsingular Hamiltonian H and a singular supersymmetric partner Hα, the Darboux and factorization relations of supersymmetric quantum mechanics can be only formal relations. It was shown how we can construct an adequate partner by using infinite barriers placed where are located the singularities on the real axis and recover isospectrality. This method was applied to superpartners of the harmonic oscillator with one singularity. In this paper, we apply this method to the singular isotonic oscillator with two singularities on the real axis. We also applied these results to four 2D superintegrable systems with second and third-order integrals of motion obtained by Gravel for which polynomial algebras approach does not allow to obtain the energy spectrum of square integrable wavefunctions. We obtain solutions involving parabolic cylinder functions. 2012 Article Singular Isotonic Oscillator, Supersymmetry and Superintegrability / I. Marquette // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 47 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 81R15; 81R12; 81R50 DOI: http://dx.doi.org/10.3842/SIGMA.2012.063 http://dspace.nbuv.gov.ua/handle/123456789/148465 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
In the case of a one-dimensional nonsingular Hamiltonian H and a singular supersymmetric partner Hα, the Darboux and factorization relations of supersymmetric quantum mechanics can be only formal relations. It was shown how we can construct an adequate partner by using infinite barriers placed where are located the singularities on the real axis and recover isospectrality. This method was applied to superpartners of the harmonic oscillator with one singularity. In this paper, we apply this method to the singular isotonic oscillator with two singularities on the real axis. We also applied these results to four 2D superintegrable systems with second and third-order integrals of motion obtained by Gravel for which polynomial algebras approach does not allow to obtain the energy spectrum of square integrable wavefunctions. We obtain solutions involving parabolic cylinder functions. |
format |
Article |
author |
Marquette, I. |
spellingShingle |
Marquette, I. Singular Isotonic Oscillator, Supersymmetry and Superintegrability Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Marquette, I. |
author_sort |
Marquette, I. |
title |
Singular Isotonic Oscillator, Supersymmetry and Superintegrability |
title_short |
Singular Isotonic Oscillator, Supersymmetry and Superintegrability |
title_full |
Singular Isotonic Oscillator, Supersymmetry and Superintegrability |
title_fullStr |
Singular Isotonic Oscillator, Supersymmetry and Superintegrability |
title_full_unstemmed |
Singular Isotonic Oscillator, Supersymmetry and Superintegrability |
title_sort |
singular isotonic oscillator, supersymmetry and superintegrability |
publisher |
Інститут математики НАН України |
publishDate |
2012 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/148465 |
citation_txt |
Singular Isotonic Oscillator, Supersymmetry and Superintegrability / I. Marquette // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 47 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT marquettei singularisotonicoscillatorsupersymmetryandsuperintegrability |
first_indexed |
2025-07-12T19:32:30Z |
last_indexed |
2025-07-12T19:32:30Z |
_version_ |
1837470850438135808 |
fulltext |
Symmetry, Integrability and Geometry: Methods and Applications SIGMA 8 (2012), 063, 14 pages
Singular Isotonic Oscillator, Supersymmetry
and Superintegrability?
Ian MARQUETTE
School of Mathematics and Physics, The University of Queensland,
Brisbane, QLD 4072, Australia
E-mail: i.marquette@uq.edu.au
Received July 20, 2012, in final form September 14, 2012; Published online September 19, 2012
http://dx.doi.org/10.3842/SIGMA.2012.063
Abstract. In the case of a one-dimensional nonsingular Hamiltonian H and a singular
supersymmetric partner Ha, the Darboux and factorization relations of supersymmetric
quantum mechanics can be only formal relations. It was shown how we can construct
an adequate partner by using infinite barriers placed where are located the singularities
on the real axis and recover isospectrality. This method was applied to superpartners of
the harmonic oscillator with one singularity. In this paper, we apply this method to the
singular isotonic oscillator with two singularities on the real axis. We also applied these
results to four 2D superintegrable systems with second and third-order integrals of motion
obtained by Gravel for which polynomial algebras approach does not allow to obtain the
energy spectrum of square integrable wavefunctions. We obtain solutions involving parabolic
cylinder functions.
Key words: supersymmetric quantum mechanics; superintegrability; isotonic oscillator; poly-
nomial algebra; special functions
2010 Mathematics Subject Classification: 81R15; 81R12; 81R50
1 Introduction
In recent years, many papers [2, 4, 5, 8, 13, 17, 19, 23, 38] were devoted to a nonsingular isotonic
oscillator and its various generalizations. It is also referred in literature as CPRS system and
also often written using the following parameter ω = ~
2a2
or taking ~ = 1. This quantum system
is exactly solvable and given by the following equation (i.e. with the parameter given by a = ia0,
a0 ∈ R)
H =
P 2
x
2
+ ~2
(
x2
8a4
+
1
(x− a)2
+
1
(x+ a)2
)
. (1)
Let us also define the singular isotonic oscillator that correspond to the Hamiltonian given by
the equation (1) with alternatively the parameter defined as a ∈ R and the singularities are
on the real axis. Let us mention that in the nonsingular case the solutions in terms of series
was obtained [8] that involve polynomials that are linear combinations of Hermite polynomials.
Moreover, it was shown by J. Sesma [38] that the corresponding Schrödinger equation can be
transformed into the confluent Heun equation [39, 40] and studied quasi-exactly solvable analogs.
In addition, the CPRS system was related to position-dependent effective mass Schrödinger
equations (PDMS) [23] and it was shown recently, using Bethe ansatz method [2], that this
system possesses also a hidden sl(2) algebraic structure.
Let us mention that the nonsingular isotonic oscillator was obtained and studied in earlier
works of Spiridonov and Veselov in the context of the dressing chain method [41, 43] and that
?This paper is a contribution to the Special Issue “Superintegrability, Exact Solvability, and Special Functions”.
The full collection is available at http://www.emis.de/journals/SIGMA/SESSF2012.html
mailto:i.marquette@uq.edu.au
http://dx.doi.org/10.3842/SIGMA.2012.063
http://www.emis.de/journals/SIGMA/SESSF2012.html
2 I. Marquette
some results presented in [13] were obtained in the papers [37, 42]. This system is also a parti-
cular case of a system [3, 6, 7, 26, 28] involving the fourth Painlevé transcendent [20] and related
to third-order supersymmetric quantum mechanics (SUSYQM). Recently, using a modified fac-
torization a family that include this system was also obtained [13].
The nonsingular isotonic oscillator also appears in context of 2D quantum superintegrable
systems with a second and a third-order integrals of motion with separation of variables in Carte-
sian coordinates classified by S. Gravel [18]. Four of these systems that possess more integrals
than degrees of freedom, contain the nonsingular isotonic oscillator. These four superintegrable
systems were studied [27, 30] from the point of view of SUSYQM [16, 22, 45] and polynomial
algebras. The square integrable wavefunctions and the energy spectrum were obtained. Fur-
thermore, the superintegrability property does not depend on the nature of the singularity and
thus the 2D superintegrable systems remain superintegrable when we take a ∈ R and thus these
2D superintegrable systems also admit two types, i.e. one singular and one regular type. The
singular version of these 2D superintegrable Hamiltonian remain to be solved.
Let us mention, that the singular isotonic oscillator (i.e. equation (1) with a ∈ R) belongs
to the class of 1D Hamiltonian constructed by Robnik [36] from SUSYQM with higher excited
states to construct the superpotential. It was recognized that the factorisation and interwining
(or Darboux) relations of SUSYQM are only formal.
It was observed by many authors that for systems with singularities on the real axis related
to a regular superpartner, SUSYQM does not allow [9, 10, 21, 31, 46, 47] to relate the wave-
functions and the energy spectrum of the superpartners using supercharges. Supersymmetry
and it algebraic equations (factorization, Darboux or intertwining) are formal and do not take
into account boundaries or singularities. A method to reobtain the isospectrality property, i.e.
relate the wavefunctions and the energy spectrum for a singular Hamiltonian and its regular
superpartner, consists to use infinite barriers to modify the regular Hamiltonian [31]. However,
this idea was only applied to systems with only one singularity on the real axis. The study of
Hamiltonians with many singularities using this approach is an unexplored subject.
The purpose of this paper is to apply this approach to the singular isotonic oscillator which
has 2 singularities of the real axis and also use these results to obtain the energy spectrum
and wavefunctions for four 2D singular superintegrable systems with a second and third-order
integrals that remains to be solved.
Let us present the organization of the paper. In Section 2, we recall results obtained for the
constrained harmonic oscillator. In Section 3, present definition and results concerning super-
symmetric quantum mechanics and discussed how we can construct the adequate superpartner
for singular and nonsingular superpartners. In Section 4, we apply the results of Section 2 and
the method of Marquez, Negro and Nieto [31] to the singular isotonic oscillator. We obtain the
wavefunctions and square integrable wavefunctions. In Section 5, we discuss how the polynomial
algebra obtained for four 2D singular superintegrable systems with a second and a third integrals
of motion that contain the singular isotonic oscillator is only formal and related to SUSYQM.
We apply the results of Section 4 to solve these systems and obtain the corresponding energy
spectrum and wavefunctions in terms of the parabolic cylinder functions.
2 Constrained harmonic oscillator
Let us recall known results concerning the 1D unconstrained and constrained harmonic oscillator
(i.e. with one or two symmetric infinite barriers). The unconstrained harmonic oscillator that
we denote by VI is given by the following well known Hamiltonian
Hψ =
(
−~2
2
d2
dx2
+ VI(x)
)
ψ(z) = Eψ(x), VI(x) =
ω2x2
2
, −∞ < x <∞. (2)
Singular Isotonic Oscillator, Supersymmetry and Superintegrability 3
The energy spectrum and the wavefunctions are also well known
En =
(
n+
1
2
)
~ω, ψn =
(√
πn!
)− 1
2 hn
((
2ω
~
) 1
2
x
)
,
where hn are the Hermite polynomials.
We can defined on [B,∞) and [−B,B] respectively the constrained harmonic oscillators VII
and VIII [11, 32]:
VII(x) =
ω2x2
2
, x ≥ B, B > 0,
∞, x < B, B ∈ R,
(3)
VIII(x) =
ω2x2
2
, −B ≤ x ≤ B, B > 0,
∞, x < −B, x > B, B ∈ R.
(4)
We consider also the following transformation
z =
√
2ω
~
x, ε = − E
~ω
, b =
√
2ω
~
B, ψ(x) = y(z),
and the Schrödinger equation corresponding to the non vanishing part of these potentials VII
and VIII thus become the Weber differential equation
d2y(z)
dz2
−
(
z2
4
+ ε
)
y(z) = 0. (5)
2.1 Constrained harmonic oscillator VII
For the quantum system VII given by equation (3) we have the following constraints on the
solution y(z) of the equation (5) [11, 31, 32]:
(i) y(z) must be square integrable,
(ii) y(z) must be continuous on R, i.e. y(z)→ 0 when x→ b+.
The equation (5) can be solved in terms of the parabolic cylinder functions [1, 44]
y1(ε, z) = e−
1
4
z2
1F1
(
1
2
ε+
1
4
,
1
2
,
1
2
z2
)
, y2(ε, z) = e−
1
4
z2
1F1
(
1
2
ε+
3
4
,
3
2
,
1
2
z2
)
,
where 1F1 is the confluent hypergeometric function also related to the Whittaker function. We
can also introduce the following and more appropriate functions in the case of this constrained
harmonic oscillator [1, 44] U(ε, z) and V (ε, z) that are combinations of y1(ε, z) and y2(ε, z) and
given by
U(ε, z) = Y1 cos
(
π
(
1
4
+
1
2
ε
))
− Y2 sin
(
π
(
1
4
+
1
2
ε
))
,
V (ε, z) =
1
Γ
(
1
2 − ε
) (Y1 sin
(
π
(
1
4
+
1
2
ε
))
+ Y2 cos
(
π
(
1
4
+
1
2
ε
)))
,
where
Y1(ε, z) =
π
1
2 sec
(
π
(
1
4 + 1
2ε
))
2
1
2
ε+ 1
4 Γ
(
3
4 + 1
2ε
) y1(ε, z), Y2(ε, z) =
π
1
2 cosec
(
π
(
1
4 + 1
2ε
))
2
1
2
ε− 1
4 Γ
(
1
4 + 1
2ε
) y2(ε, z).
4 I. Marquette
The asymptotic behavior of the functions U(ε, z) and V (ε, z) is given by the following expressions
U(ε, z) ∼ e−
z2
4
zε+
1
2
(
1−
(
ε+ 1
2
) (
ε+ 3
2
)
2z2
+ · · ·
)
,
V (ε, z) ∼
√
2
πe
z2
4
z−ε+
1
2
(
1 +
(
ε− 1
2
) (
ε− 3
2
)
2z2
+ · · ·
)
.
V (ε, x) diverge for z →∞ but U(ε, x) is an appropriate solution and we thus take
yII(ε, z) =
{
U(ε, z), z ≥ b,
0, z < b.
(6)
Let us present some results [11] concerning the discrete ensemble of solutions. It can be
shown (from U(εIIn (b), b) = 0) that the energy levels depend of the position denoted b of the
infinite barrier ( with b assumed to be positive ) in the following way
εIIn (b) = −1
2
+ ε0(n) + ε1(n)b+ ε2(n)b2 + · · · , n = 0, 1, 2, . . . ,
and the first coefficients are given by the following recurrence relations
ε0(n) = −(2n+ 1), n = 0, 1, 2, . . . ,
ε1(n+ 1) =
2n+ 3
2n+ 2
ε1(n), ε1(0) = −2
1
2π−
1
2 ,
ε2(n+ 1) =
(
2n+ 3
2n+ 2
)2
ε2(n) +
(2n+ 3)!(2n+ 2)!
16π((n+ 1)!)4(n+ 1)24n
,
ε2(0) = −2π−1(1− Log[2]).
These recurrence relations can be solved to obtain explicitly the value of the coefficients. The
coefficients of higher-order terms can be calculated and this calculation could also be imple-
mented numerically. Therefore, for every fixed value of b where the infinite barrier is located, the
zeros of this equation provide a discrete ensemble of solutions [11, 31, 32] εIIn (b), n = 0, 1, 2, . . .
and for the Hamiltonian with the potential given as in equation (3) we have EII
n (b) = −~ωεIIn (b).
The corresponding eigenfunctions are then U(εIIn (b), z). The Fig. 1 presents the energy for the
ground state and the 10 first excited states as a function of the position of the infinite barrier.
The Fig. 3 presents the ground state for an infinite barrier located at b = 1. The only exactly
solvable case [11, 31, 32] is when b = 0. In this particular case we obtain from the condition
U(εIIn , 0) = 0
EII
n = −~ωεn = ~ω
(
2n+ 1 +
1
2
)
, n = 0, 1, 2, . . . .
The wavefunctions correspond to the odd levels of the harmonic oscillator. The limiting case
where b→∞ allow to recover the spectrum of the harmonic oscillator given by equation (2).
2.2 Constrained harmonic oscillator VIII
For the system VIII given by equation (4), we have the following constraints [11, 31]
(i) y(z) must be square integrable,
(ii) y(z) must be continuous on R, i.e. y(z)→ 0 when z → b+ and z → −b−.
Singular Isotonic Oscillator, Supersymmetry and Superintegrability 5
-2 0 2 4 6
0
10
20
30
40
50
b
Figure 1. EII
n (b) for the ground state and the
10 first excited states, ~ = 1 and ω = 1 for the
Case VII.
-2 -1 0 1 2 3 4 5
0
10
20
30
40
50
b
Figure 2. EIII
n (b) for the ground state and the
10 first excited states, ~ = 1 and ω = 1 for the
Case VIII.
The associated eigenfunctions are the even and odd functions y1(ε, z) and y2(ε, z).
yIII(ε, z) =
y1(ε, z), n odd, −b ≤ z ≤ b,
y2(ε, z), n even, −b ≤ z ≤ b,
0, z < −b, z > b.
The expansion of the eigenvalues as a function of the positions of the barriers takes the form
in this case [11]
εIIIn (b) =
ε−2(n)
b2
+ ε0(n) + ε2(n)b2 + ε4(n)b4 + ε6(n)b6 + · · · , n = 0, 1, 2, . . . ,
with the first coefficients given by
ε−2(n) = −
(
n+ 1
2
)2
π2, n = 0, 1, 2, . . . ,
ε0(n) = ε4 = 0, ε2(n) = − 1
12
− 1
8ε−2(n)
,
ε6(n) =
1
720ε−2(n)
+
5
192ε−2(n)2
+
7
128ε−2(n)3
.
These relations thus provide for a fixed value of b a discrete ensemble of solutions εIIIn (b), n =
0, 1, 2, . . . . For the system given by the equation (4) the energy spectrum is thus EIII
n (b) =
−~ωεIIIn (b). The corresponding eigenfunctions are then y1(ε
III
n (b), z) for the even levels and
y1(ε
III
n (b), z) for the odd levels. The Fig. 2 presents the energy for the ground state and the 10
first excited states as a function of the position of the infinite barrier. The Fig. 4 presents the
ground state for an infinite barrier located at b = 1.
3 Factorization method and singular Hamiltonian
In supersymmetric quantum mechanics [16, 22, 45], we can define two first-order operators A
and A† (supercharges) in the following way
A =
~√
2
d
dx
+W (x), A† = − ~√
2
d
dx
+W (x).
where W (x) is called the superpotential.
6 I. Marquette
-2 0 2 4 6 8
-0.1
0.0
0.1
0.2
0.3
0.4
0.5
z
Figure 3. The wavefunction for the ground
state U(εII0 , z) (with ~ = 1 and b = 1) for the
Case VII.
-2 -1 0 1 2
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0
z
Figure 4. The wavefunction for the ground
state y1(εIII0 , z) (with ~ = 1 and b = 1) for the
Case VIII.
We consider the following two Hamiltonians which are called “superpartners”
H1 = A†A = −~2
2
d2
dx2
+W 2 − ~√
2
W ′, H2 = AA† = −~2
2
d2
dx2
+W 2 +
~√
2
W ′. (7)
It can be shown that these algebraic relations allow to relate eigenfunctions and energy spectrum
of the two superpartners H1 and H2. There are two cases that can be considered. The first one
corresponds to broken supersymmetry and happen when Aψ
(1)
0 6= 0, E
(1)
0 6= 0, A†ψ
(2)
0 6= 0 and
E
(2)
0 6= 0. The wavefunctions and the energy spectra are thus related in the following way
E(2)
n = E(1)
n > 0, ψ(2)
n =
(
E(1)
n
)− 1
2Aψ(1)
n , ψ(1)
n =
(
E(2)
n
)− 1
2A†ψ(2)
n , (8)
and the two Hamiltonians are strictly isospectral.
For the second case the supersymmetry is unbroken and one of the Hamiltonians allows
a zero mode, i.e. a states is annihilated by one of the supercharges. Without lost of generality
we take H1 as having a zero mode (also referred as zero energy ground state) and thus we have
Aψ
(1)
0 = 0, E
(1)
0 = 0, A†ψ
(2)
0 6= 0 and E
(2)
0 6= 0. We obtain the following relations between the
wavefunctions and the energy spectra
E(2)
n = E
(1)
n+1, E
(1)
0 = 0, ψ(2)
n =
(
E
(1)
n+1
)− 1
2Aψ
(1)
n+1, ψ
(1)
n+1 =
(
E(2)
n
)− 1
2A†ψ(2)
n . (9)
In this case, the superpotential W (x) can be written in term ψ
(1)
0 as W (x) =
ψ
(1)′
0
ψ
(1)
0
.
These relations (8) and (9) allow, if one of these systems (H1 or H2) is exactly solvable, to
obtain the energy spectrum and the wavefunctions of its superpartner. A such construction can
be extended more generally to families of superpartners and superpartners of kth-order. It can
be shown, that in the case of Hermitian operators, the factorization relations (7) are equivalent
to the following intertwinning (also called Darboux) relations
H1A = AH2, A†H1 = H2A
†. (10)
The factorization and interwining relations can be combined and written in terms of matrices
that generate a superalgebra. These algebraic relations also allow to relate the creation and
annihilation operators of the Hamiltonians H1 and H2. The ladder operators c† and c of H1 and
the ladder operators of H2 that we denote M † and M are related by
M = A†cA, M † = A†c†A, (11)
Singular Isotonic Oscillator, Supersymmetry and Superintegrability 7
However, as mentioned earlier the algebraic relations given by equations (7), (10) and (11)
can be formal and do not take into account boundaries and singularities. In the case of a 1D
nonsingular Hamiltonian H1 and a singular supersymmetric partner H2 the wavefunctions ψ(2)
obtained from those of H1 (i.e. ψ(1)) and by acting with the supercharges (i.e. using (8) or (9))
on are not guaranteed to belong in the Hilbert space of H2. If the supercharges admit singularity
the resulting wavefunctions could also admit singularity.
It is known that a singularity of the form 1
(x−a)2 makes that a particle is confined in one of
the regions (i.e. left or right side of the singularity) because the probability of going through
the barrier is zero. We thus need to compute independently the eigenfunctions for each region
divided by a such singularity [15, 24]. It was shown by Marquez, Nieto and Negro [31] that
for Hamiltonians with such singular terms we can construct an adequate superpartner by using
infinite barriers placed where are located the singularities on the real axis and recover isospec-
trality between the superpartners. The wavefunctions and the energy spectrum of the systems
with singularities can now be obtained from those of the regular Hamiltonian with infinite bar-
riers and the equations (8) and (9). Using this approach, families of quantum systems that are
superpartners of the harmonic oscillator with one singularity were studied [31].
4 Singular nonlinear oscillator
Let us consider the following supercharges that admit singularities at a and −a
A† =
~√
2
(
− d
dx
− 1
2a2
x−
(
−1
x− a
+
−1
x+ a
))
,
A =
~√
2
(
d
dx
− 1
2a2
x−
(
−1
x− a
+
−1
x+ a
))
.
We can form from these operators, the following Hamiltonian H1 and H2
H1 = A†A =
P 2
x
2
+ V1 =
P 2
x
2
+
~2x2
8a4
+
~2
(x− a)2
+
~2
(x+ a)2
− 3~2
4a2
, (12)
H2 = AA† =
P 2
x
2
+ V2 =
P 2
x
2
+
~2x2
8a4
− 5~2
4a2
. (13)
These algebraic relations can be used in the case a = ia0, a0 ∈ R to solve the nonsingular
isotonic oscillator, but in the singular case a ∈ R they can not be used. The Hamiltonian H2
is the well known harmonic oscillator with an additive constant and in principle the SUSYQM
relations would provide the corresponding wavefunctions and energy spectrum of the Hamil-
tonian H1. However, the operators A† contains singularities and using SUSYQM relations, we
obtain eigenstates of the Hamiltonian H1 but non square integrable states and thus non physical
states. However, as mentioned this is possible to recover the isospectrality by using an appro-
priate superpartner for each region we would like to compute the wavefunctions and defined by
the singularities, i.e. R1 = (−∞,−a], R2 = [a,∞) and R3 = [−a, a]. Due to symmetry, the
calculation for the first and the second regions are similar. Let us only present, the calculation
in the case of the regions R2 and R3.
In the case of the singular Hamiltonian H1 in the region R2 we consider a modified super-
partner that is the potential given by equation (3) up to an additive constant that does not
affect the results obtained in Section 2 is
V2II(x) =
~2x2
8a4
− 5~2
4a2
, x ≥ a, a > 0,
∞, x < a, a ∈ R.
8 I. Marquette
In the case of the singular Hamiltonian H1 in the region R3 we take a modified superpartner
as given by equation (3) up to an additive constant
V2III(x) =
~2x2
8a4
− 5~2
4a2
, −a ≤ x ≤ a, a > 0,
∞, x < −a, x > a, a ∈ R.
The case with two singularities differs from the case with one singularity because of the
possibility of bounded intervals as R3 and as we saw from the Fig. 1–4 the behavior of the
two types of constrained harmonic oscillator differ and thus their superpartners will also admit
different spectrum and wavefunctions. We can now apply results of Sections 2 and 4 and we
obtain for the Hamiltonian given by equation (12).
Case R2 = [a,∞):
ψ
(
εIIn (a), x
)
= A†yII(x)
=
[
~√
2
(
− d
dx
− 1
2a2
x−
(
−1
x− a
+
−1
x+ a
))]
U
(
εIIn (a), x
)
, x ≥ a,
0, x ≤ a,
EII
n =
~2
2a2
(
εIIn (a)− 5
2
)
.
Case R3 = [−a, a]:
ψ
(
εIIIn (a), x
)
= A†yIII(x)
=
[
~√
2
(
− d
dx
− 1
2a2
x−
(
−1
x− a
+
−1
x+ a
))]
y1
(
εIIIn (a), x
)
, n even, x ≤ |a|,[
~√
2
(
− d
dx
− 1
2a2
x−
(
−1
x− a
+
−1
x+ a
))]
y2
(
εIIIn (a), x
)
, n odd, x ≤ |a|,
0, x ≥ |a|,
EIII
n =
~2
2a2
(
εIIIn (a)− 5
2
)
.
The wavefunctions are square integrable and also continuous at the infinite barrier by construc-
tion. This can be obtained by considering the local behavior in terms of a Taylor series about
the position of the infinite barrier. The completeness of the set is also provided by the fact that
the state annihilated by the operator A has singularities at the infinite barrier and is not an
admissible wavefunction. In the next section we will show how these results can also be used in
context of superintegrable systems that also involve such singular systems.
5 SUSYQM and superintegrability
Let us now consider the following 2D superintegrable Hamiltonian
Hs1 = Hx1 +Hx2 =
1
2
P 2
x1 +
1
2
P 2
x2 + ~2
(
x21 + x22
8a4
+
1
(x1 − a)2
+
1
(x1 + a)2
)
. (14)
This system is one of the four irreducible superintegrable systems with a second and a third-
order integrals of motion found by Gravel [18] that remained to be solved. An important
property of superintegrable systems with higher-order integrals of motion is that the quantum
systems and their classical analog do not necessarily coincide [18]. In this case the classical
limit is the free particle. It involves the nonsingular or the singular isotonic oscillator as we
Singular Isotonic Oscillator, Supersymmetry and Superintegrability 9
choose a = ia0, a0 ∈ R or a ∈ R. The existence of the integrals of motion does not depend on
the nature of the singularities and thus of this choice. This system was studied [27, 30] using
polynomial algebras for both cases. However, only in the nonsingular case the finite-dimensional
unitary representations correspond to physical states. In the singular case, the integrals (i.e.
they commute with the Hamiltonian Hs1) I1 and I2 take the form
I1 = P 2
x1 − P
2
x2 + 2~2
(
x21 − x22
8a4
+
1
(x1 − a)2
+
1
(x1 + a)2
)
,
I2 =
1
2
{
L,P 2
x1
}
+
1
2
~2
{
x2
(
4a2 − x21
4a4
− 6(x21 + a2)
(x21 − a2)2
)
, Px1
}
+
1
2
~2
{
x1
(
(x21 − 4a2)
4a4
− 2
x21 − a2
+
4(x21 + a2)
(x21 − a2)2
)
, Px2
}
,
where { , } is the anticommutator. They are respectively polynomials in the momenta of order 2
and 3. These integrals generate the following commutation relations [27, 30]
[I1, I2] = I3, [I1, I3] =
4h4
a4
I2,
[I2, I3] = −2~2I31 − 6~2I21Hs1 + 8~2H3
s1 + 6
~4
a2
I21
+ 8
~4
a2
Hs1I1 − 8
~4
a2
H2
s1 + 2
~6
a4
I1 − 2
~6
a4
Hs1 − 6
~8
a6
.
We can calculate the Casimir operator, the realizations in terms of deformed oscillator al-
gebras, the finite-dimensional unitary representation and the corresponding energy spectrum.
For a ∈ R the following solutions is obtained
E =
~2(p+ 3)
2a2
, Φ(N) =
~8
a4
N(p+ 1−N)(N + 1)(N + 3),
where Φ(N) is the structure functions of the deformed oscillator algebra. However, the polyno-
mial algebra does not take into account boundaries and singularities and is thus only a formal
algebraic construction in this case and this finite-dimensional unitary representations do not
correspond to physical states. Furthermore, this is the same energy spectrum that is obtained
by using the formal factorization and Darboux relations with the harmonic oscillator and given
by equation (12) and (13). However, as mentioned we can show they are not square integrable.
The fact that the polynomial algebra and the SUSYQM relation are formal is also related.
This can be understood from the fact that the integrals and the polynomial algebras can be
derived using SUSYQM [26]. In the x1-axis, the ladder operators are constructed from super-
symmetry with the supercharges using equation (11) [26, 27]. The annihilation operators are
given by
Mx1 =
~2
4a2
(
− d
dx1
− 1
2a2
x1 +
(
1
x1 − a
+
1
x1 + a
))
×
(
x1 + 2a2
d
dx1
)(
d
dx1
− 1
2a2
x1 +
(
1
x1 − a
+
1
x1 + a
))
,
Mx2 =
~
2a2
(
x2 + 2a2
d
dx2
)
,
with the creation operators obtained by considering (Mx1)† and (Mx2)†. The integrals can be
written as
I2 =
−2a2i
~
(
M †x1Mx2 −Mx1M
†
x2
)
, I3 =
−2a2i
~
(
M †x1Mx2 +Mx1M
†
x2
)
.
10 I. Marquette
5.1 Modified SUSYQM and singular superintegrable systems
Let us consider again the Hamiltonian Hs1 given by the equation (14) and use the results
of Section 4 on the 1D Hamiltonian Hx1 and takes a modified superpartner that is isospectral
using infinite barrier at the singularities. The 1D Hamiltonian Hx2 is only the 1D unconstrained
harmonic oscillator.
The wavefunctions and the energy spectrum would be thus for a particle in the region [a,∞)
for the axis x1
Φ(x1, x2) = χ(x2)A
†y
(a)
II (x1)
=
[
χ(x2)
~√
2
(
− d
dx1
− 1
2a2
x1 −
(
−1
x1 − a
+
−1
x1 + a
))]
U
(
εn(a), x1
)
, x1 ≥ a,
0, x1 ≤ a,
E =
~2
2a2
(
εIIn (a) + k − 2
)
.
For a particle in the region [−a, a] for the axis x1
Φ(x1, x2) = χ(x2)A
†y
(a)
III (x1)
=
[
χ(x2)
~√
2
(
− d
dx1
− 1
2a2
x1 −
(
−1
x1 − a
+
−1
x1 + a
))]
y1(εn(a), x1), n even, x1 ≤ |a|,[
χ(x2)
~√
2
(
− d
dx1
− 1
2a2
x1 −
(
−1
x1 − a
+ −1
x1+a
))]
y2(εn(a), x1), n odd, x1 ≤ |a|,
0, x1 ≥ |a|,
E =
~2
2a2
(
εIIIn (a) + k − 2
)
,
with
χ(x2) = Ce
−1
4a2
x22Hk
(√
1
2a2
x2
)
.
The eigenfunctions and energy spectrum for the three other irreducible 2D superintegrable
systems with a second and third-order integrals of motion can be calculated using the same
approach.
Hamiltonian Hs2
Hs2 =
1
2
P 2
x1 +
1
2
P 2
x2 + ~2
(
x21 + 9x22
8a4
+
1
(x1 − a)2
+
1
(x1 + a)2
)
.
For a particle in the region [a,∞) for the axis x1
Φ(x1, x2) = χ(x2)A
†y
(a)
II (x1)
=
[
χ(x2)
~√
2
(
− d
dx1
− 1
2a2
x1 −
(
−1
x1 − a
+
−1
x1 + a
))]
U(εn(a), x1), x1 ≥ a,
0, x1 ≤ a,
E =
~2
2a2
(
εIIn (a) + k − 1
)
.
For a particle in the region [−a, a] for the axis x1
Φ(x1, x2) = χ(x2)A
†y
(a)
III (x1)
Singular Isotonic Oscillator, Supersymmetry and Superintegrability 11
=
[
χ(x2)
~√
2
(
− d
dx1
− 1
2a2
x1 −
(
−1
x1 − a
+
−1
x1 + a
))]
y1(εn(a), x1), n even, x1 ≤ |a|,[
χ(x2)
~√
2
(
− d
dx1
− 1
2a2
x1 −
(
−1
x1 − a
+
−1
x1 + a
))]
y2(εn(a), x1), n odd, x1 ≤ |a|,
0, x1 ≥ |a|,
E =
~2
2a2
(
εIIIn (a) + k − 1
)
,
with
χ(x2) = Ce
−3
4a2
x22Hk
(√
3
2a2
x2
)
.
Hamiltonian Hs3
Hs3 =
1
2
P 2
x1 +
1
2
P 2
x2 + ~2
(
x21 + x22
8a4
+
1
x22
+
1
(x1 − a)2
+
1
(x1 + a)2
)
.
For a particle in the region [a,∞) for the axis x1
Φ(x1, x2) = χ(x2)A
†y
(a)
II (x1)
=
[
χ(x2)
~√
2
(
− d
dx1
− 1
2a2
x1 −
(
−1
x1 − a
+
−1
x1 + a
))]
U(εn(a), x1), x1 ≥ a,
0, x1 ≤ a,
E =
~2
2a2
(
εIIn (a) + k
)
.
For a particle in the region [−a, a] for the axis x1
Φ(x1, x2) = χ(x2)A
†y
(a)
III (x1)
=
[
χ(x2)
~√
2
(
− d
dx1
− 1
2a2
x1 −
(
−1
x1 − a
+
−1
x1 + a
))]
y1(εn(a), x1), n even, x1 ≤ |a|,[
χ(x2)
~√
2
(
− d
dx1
− 1
2a2
x1 −
(
−1
x1 − a
+
−1
x1 + a
))]
y2(εn(a), x1), n odd, x1 ≤ |a|,
0, x1 ≥ |a|,
E =
~2
2a2
(
εIIIn (a) + k
)
,
with
χ(x2) = e−
1
4a2
x22x22L
3
2
k
(
1
2a2
x22
)
,
where L
3
2
k are Laguerre polynomials.
Hamiltonian Hs4
Hs4 =
1
2
P 2
x1 +
1
2
P 2
x2 + ~2
(
x21 + x22
8a4
+
1
(x1 − a)2
+
1
(x1 + a)2
) +
1
(x2 − a)2
+
1
(x2 + a)2
)
.
For a particle in the region [a,∞) for the axis x1 and x2
Φ(x1, x2) =
2∏
i
A†iy
(a)
II (xi),
12 I. Marquette
with
A†iy
(a)
II (xi) =
[
~√
2
(
− d
dxi
− 1
2a2
xi −
(
−1
xi − a
+
−1
xi + a
))]
U(εn(a), xi), xi ≥ a,
0, xi ≤ a,
E =
~2
2a2
(
εIIn (a) + k − 5
)
.
For a particle in the region [−a, a] for the axes x1 and x2
Φ(x1, x2) =
2∏
i
A†iy
(a)
III (xi),
with
A†iy
(a)
III (xi)
=
[
~√
2
(
− d
dxi
− 1
2a2
xi −
(
−1
xi − a
+ −1
xi+a
))]
y1(εn(a), xi), n even, xi ≤ |a|,[
~√
2
(
− d
dxi
− 1
2a2
xi −
(
−1
xi − a
+
−1
xi + a
))]
y2(εn(a), xi), n odd, xi ≤ |a|,
0, x1 ≥ |a|,
E =
~2
2a2
(
εIIIn (a) + k − 5
)
,
6 Conclusion
In this paper, we studied the singular isotonic oscillator using the approach introduced in [31].
We obtained the energy spectrum and the wavefunctions from supersymmetry by identifying
the appropriate superpartner. We also studied four singular 2D superintegrable Hamiltonians
obtained by Gravel. The energy spectrum in the 1D cases is no longer equidistant and in the 2D
superintegrable versions the energy spectra do not display accidental degeneracy explained by
a polynomial algebra that is only formal. However, this point out how supersymmetric quantum
mechanics can be used to solve such systems. The wavefunctions are also interesting from the
point of view of special functions as they are written in terms of expressions involving parabolic
cylinder functions. These results could also be interesting in regard of possible applications. The
constrained harmonic oscillators has found applications in the context of condensed matter [14].
Moreover, the factorization is not unique [33] and it was shown that the nonsingular isotonic
oscillator has more general families of superpartners [29]. Many families of nonsingular super-
partners of the radial oscillator were obtained and the relations with exceptional orthogonal
polynomial studied [35]. The study of the singular version of these systems and the relations
with special functions is also important. The approach described in this paper could also be ap-
plied to systems involving the fourth and the fifth Painlevé transcendents that generate families
of systems with singularities on the real axis for specific parameters [3, 6, 7, 25, 26, 28].
These results are also important as supersymmetry plays a role in the construction of new
superintegrable systems in Cartesian [25, 29] but also in polar coordinates [12, 34].
Acknowledgements
This work was supported by the Australian Research Council through Discovery Project
DP110101414. The article was written in part while he was visiting the Universite Libres de
Bruxelles. He thanks C. Quesne for her hospitality. He thanks the FNRS for a travel fellowship.
Singular Isotonic Oscillator, Supersymmetry and Superintegrability 13
References
[1] Abramowitz M., Stegun I.A., Handbook of mathematical functions, with formulas, graphs, and mathematical
tables, Dover Publications, New York, 1972.
[2] Agboola D., Zhang Y.Z., Unified derivation of exact solutions for a class of quasi-exactly solvable models,
J. Math. Phys. 53 (2012), 042101, 13 pages, arXiv:1111.1050.
[3] Andrianov A., Cannata F., Ioffe M., Nishnianidze D., Systems with higher-order shape invariance: spectral
and algebraic properties, Phys. Lett. A 266 (2000), 341–349, quant-ph/9902057.
[4] Berger M.S., Ussembayev N.S., Isospectral potentials from modified factorization, Phys. Rev. A 82 (2010),
022121, 7 pages, arXiv:1008.1528.
[5] Berger M.S., Ussembayev N.S., Second-order supersymmetric operators and excited states, J. Phys. A:
Math. Theor. 43 (2010), 385309, 10 pages, arXiv:1007.5116.
[6] Bermúdez D., Fernández C. D.J., Non-Hermitian Hamiltonians and the Painlevé IV equation with real
parameters, Phys. Lett. A 375 (2011), 2974–2978, arXiv:1104.3599.
[7] Bermúdez D., Fernández C. D.J., Supersymmetric quantum mechanics and Painlevé IV equation, SIGMA
7 (2011), 025, 14 pages, arXiv:1012.0290.
[8] Cariñena J.F., Perelomov A.M., Rañada M.F., Santander M., A quantum exactly solvable nonlinear oscil-
lator related to the isotonic oscillator, J. Phys. A: Math. Theor. 41 (2008), 085301, 10 pages.
[9] Casahorran J., Esteve J.G., Supersymmetric quantum mechanics, anomalies and factorization, J. Phys. A:
Math. Gen. 25 (1992), L347–L352.
[10] Das A., Pernice S.A., Supersymmetry and singular potentials, Nuclear Phys. B 561 (1999), 357–384,
hep-th/9905135.
[11] Dean P., The constrained quantum mechanical harmonic oscillator, Proc. Cambridge Philos. Soc. 62 (1966),
277–286.
[12] Demircioğlu B., Kuru Ş., Önder M., Verçin A., Two families of superintegrable and isospectral potentials in
two dimensions, J. Math. Phys. 43 (2002), 2133–2150, quant-ph/0201099.
[13] Fellows J.M., Smith R.A., Factorization solution of a family of quantum nonlinear oscillators, J. Phys. A:
Math. Theor. 42 (2009), 335303, 13 pages.
[14] Fernandez F.M., Simple one-dimensional quantum-mechanical model for a particle attached to a surface,
Eur. J. Phys. 31 (2010), 961–967, arXiv:1003.5014.
[15] Frank W.M., Land D.J., Spector R.M., Singular potentials, Rev. Modern Phys. 43 (1971), 36–98.
[16] Gendenshtein L., Derivation of exact spectra of the Schrödinger equation by means of supersymmetry, JETP
Lett. 38 (1983), 356–359.
[17] Grandati Y., Solvable rational extensions of the isotonic oscillator, Ann. Physics 326 (2011), 2074–2090,
arXiv:1101.0055.
[18] Gravel S., Hamiltonians separable in Cartesian coordinates and third-order integrals of motion, J. Math.
Phys. 45 (2004), 1003–1019, math-ph/0302028.
[19] Hall R.L., Saad N., Yeşiltaş Ö., Generalized quantum isotonic nonlinear oscillator in d dimensions,
J. Phys. A: Math. Theor. 43 (2010), 465304, 8 pages, arXiv:1010.0620.
[20] Ince E.L., Ordinary differential equations, Dover Publications, New York, 1944.
[21] Jevicki A., Rodrigues J.P., Singular potentials and supersymmetry breaking, Phys. Lett. B 146 (1984),
55–58.
[22] Junker G., Supersymmetric methods in quantum and statistical physics, Texts and Monographs in Physics,
Springer-Verlag, Berlin, 1996.
[23] Kraenkel R.A., Senthilvelan M., On the solutions of the position-dependent effective mass Schrödinger
equation of a nonlinear oscillator related with the isotonic oscillator, J. Phys. A: Math. Theor. 42 (2009),
415303, 10 pages.
[24] Lathouwers L., The Hamiltonian H = (−1/2)d2/dx2 + x2/2 + λ/x2 reobserved, J. Math. Phys. 16 (1975),
1393–1395.
[25] Marquette I., An infinite family of superintegrable systems from higher order ladder operators and super-
symmetry, J. Phys. Conf. Ser. 284 (2011), 012047, 8 pages, arXiv:1008.3073.
http://dx.doi.org/10.1063/1.3701833
http://arxiv.org/abs/1111.1050
http://dx.doi.org/10.1016/S0375-9601(00)00031-1
http://arxiv.org/abs/quant-ph/9902057
http://dx.doi.org/10.1103/PhysRevA.82.022121
http://arxiv.org/abs/1008.1528
http://dx.doi.org/10.1088/1751-8113/43/38/385309
http://dx.doi.org/10.1088/1751-8113/43/38/385309
http://arxiv.org/abs/1007.5116
http://dx.doi.org/10.1016/j.physleta.2011.06.042
http://arxiv.org/abs/1104.3599
http://dx.doi.org/10.3842/SIGMA.2011.025
http://arxiv.org/abs/1012.0290
http://dx.doi.org/10.1088/1751-8113/41/8/085301
http://dx.doi.org/10.1088/0305-4470/25/7/011
http://dx.doi.org/10.1088/0305-4470/25/7/011
http://dx.doi.org/10.1016/S0550-3213(99)00541-6
http://arxiv.org/abs/hep-th/9905135
http://dx.doi.org/10.1017/S0305004100039840
http://dx.doi.org/10.1063/1.1463217
http://arxiv.org/abs/quant-ph/0201099
http://dx.doi.org/10.1088/1751-8113/42/33/335303
http://dx.doi.org/10.1088/1751-8113/42/33/335303
http://dx.doi.org/10.1088/0143-0807/31/4/025
http://arxiv.org/abs/1003.5014
http://dx.doi.org/10.1103/RevModPhys.43.36
http://dx.doi.org/10.1016/j.aop.2011.03.001
http://arxiv.org/abs/1101.0055
http://dx.doi.org/10.1063/1.1633352
http://dx.doi.org/10.1063/1.1633352
http://arxiv.org/abs/math-ph/0302028
http://dx.doi.org/10.1088/1751-8113/43/46/465304
http://arxiv.org/abs/1010.0620
http://dx.doi.org/10.1016/0370-2693(84)90642-7
http://dx.doi.org/10.1088/1751-8113/42/41/415303
http://dx.doi.org/10.1063/1.522710
http://dx.doi.org/10.1088/1742-6596/284/1/012047
http://arxiv.org/abs/1008.3073
14 I. Marquette
[26] Marquette I., Superintegrability and higher order polynomial algebras, J. Phys. A: Math. Theor. 43 (2010),
135203, 15 pages, arXiv:0908.4399.
[27] Marquette I., Superintegrability with third order integrals of motion, cubic algebras, and supersymmet-
ric quantum mechanics. I. Rational function potentials, J. Math. Phys. 50 (2009), 012101, 23 pages,
arXiv:0807.2858.
[28] Marquette I., Superintegrability with third order integrals of motion, cubic algebras, and supersymmetric
quantum mechanics. II. Painlevé transcendent potentials, J. Math. Phys. 50 (2009), 095202, 18 pages,
arXiv:0811.1568.
[29] Marquette I., Supersymmetry as a method of obtaining new superintegrable systems with higher order
integrals of motion, J. Math. Phys. 50 (2009), 122102, 10 pages, arXiv:0908.1246.
[30] Marquette I., Winternitz P., Superintegrable systems with third-order integrals of motion, J. Phys. A: Math.
Theor. 41 (2008), 304031, 10 pages, arXiv:0711.4783.
[31] Márquez I.F., Negro J., Nieto L.M., Factorization method and singular Hamiltonians, J. Phys. A: Math.
Gen. 31 (1998), 4115–4125.
[32] Mei W.N., Lee Y.C., Harmonic oscillator with potential barriers – exact solutions and perturbative treat-
ments, J. Phys. A: Math. Gen. 16 (1983), 1623–1632.
[33] Mielnik B., Factorization method and new potentials with the oscillator spectrum, J. Math. Phys. 25 (1984),
3387–3389.
[34] Post S., Tsujimoto S., Vinet L., Families of superintegrable Hamiltonians constructed from exceptional
polynomials, J. Phys. A: Math. Theor., to appear, arXiv:1206.0480.
[35] Quesne C., Higher-order SUSY, exactly solvable potentials, and exceptional orthogonal polynomials, Modern
Phys. Lett. A 26 (2011), 1843–1852, arXiv:1106.1990.
[36] Robnik M., Supersymmetric quantum mechanics based on higher excited states, J. Phys. A: Math. Gen. 30
(1997), 1287–1294, chao-dyn/9611008.
[37] Samsonov B.F., Ovcharov I.N., The Darboux transformation and exactly solvable potentials with a quasi-
equidistant spectrum, Russian Phys. J. 38 (1995), 765–771.
[38] Sesma J., The generalized quantum isotonic oscillator, J. Phys. A: Math. Theor. 43 (2010), 185303, 14 pages.
[39] Slavyanov S.Yu., Confluent Heun equation, in Heun’s Differential Equations, The Clarendon Press, Oxford
University Press, New York, 1995, 87–127.
[40] Slavyanov S.Yu., Lay W., Special functions. A unified theory based on singularities, Oxford Mathematical
Monographs, Oxford University Press, Oxford, 2000.
[41] Spiridonov V., Universal superpositions of coherent states and self-similar potentials, Phys. Rev. A 52
(1995), 1909–1935, quant-ph/9601030.
[42] Tkachuk V.M., Supersymmetric method for constructing quasi-exactly and conditionally-exactly solvable
potentials, J. Phys. A: Math. Gen. 32 (1999), 1291–1300, quant-ph/9808050.
[43] Veselov A.P., On Stieltjes relations, Painlevé-IV hierarchy and complex monodromy, J. Phys. A: Math. Gen.
34 (2001), 3511–3519, math-ph/0012040.
[44] Whittaker E.T., Watson G.N., A course of modern analysis. An introduction to the general theory of infinite
processes and of analytic functions; with an account of the principal transcendental functions, Cambridge
Mathematical Library, Cambridge University Press, Cambridge, 1996.
[45] Witten E., Dynamical breaking of supersymmetry, Nuclear Phys. B 188 (1981), 513–554.
[46] Znojil M., Comment on “Supersymmetry and singular potentias” [Nuclear Phys. B 561 (1999), 357–384],
Nuclear Phys. B 662 (2003), 554–562, hep-th/0209262.
[47] Znojil M., PT -symmetric harmonic oscillators, Phys. Lett. A 259 (1999), 220–223, quant-ph/9905020.
http://dx.doi.org/10.1088/1751-8113/43/13/135203
http://arxiv.org/abs/0908.4399
http://dx.doi.org/10.1063/1.3013804
http://arxiv.org/abs/0807.2858
http://dx.doi.org/10.1063/1.3096708
http://arxiv.org/abs/0811.1568
http://dx.doi.org/10.1063/1.3272003
http://arxiv.org/abs/0908.1246
http://dx.doi.org/10.1088/1751-8113/41/30/304031
http://dx.doi.org/10.1088/1751-8113/41/30/304031
http://arxiv.org/abs/0711.4783
http://dx.doi.org/10.1088/0305-4470/31/17/016
http://dx.doi.org/10.1088/0305-4470/31/17/016
http://dx.doi.org/10.1088/0305-4470/16/8/010
http://dx.doi.org/10.1063/1.526108
http://arxiv.org/abs/1206.0480
http://dx.doi.org/10.1142/S0217732311036383
http://dx.doi.org/10.1142/S0217732311036383
http://arxiv.org/abs/1106.1990
http://dx.doi.org/10.1088/0305-4470/30/4/028
http://arxiv.org/abs/chao-dyn/9611008
http://dx.doi.org/10.1007/BF00559274
http://dx.doi.org/10.1088/1751-8113/43/18/185303
http://dx.doi.org/10.1103/PhysRevA.52.1909
http://arxiv.org/abs/quant-ph/9601030
http://dx.doi.org/10.1088/0305-4470/32/7/019
http://arxiv.org/abs/quant-ph/9808050
http://dx.doi.org/10.1088/0305-4470/34/16/318
http://arxiv.org/abs/math-ph/0012040
http://dx.doi.org/10.1016/0550-3213(81)90006-7
http://dx.doi.org/10.1016/S0550-3213(03)00293-1
http://arxiv.org/abs/hep-th/0209262
http://dx.doi.org/10.1016/S0375-9601(99)00429-6
http://arxiv.org/abs/quant-ph/9905020
1 Introduction
2 Constrained harmonic oscillator
2.1 Constrained harmonic oscillator VII
2.2 Constrained harmonic oscillator VIII
3 Factorization method and singular Hamiltonian
4 Singular nonlinear oscillator
5 SUSYQM and superintegrability
5.1 Modified SUSYQM and singular superintegrable systems
6 Conclusion
References
|