Superintegrable Stäckel Systems on the Plane: Elliptic and Parabolic Coordinates
Recently we proposed a generic construction of the additional integrals of motion for the Stäckel systems applying addition theorems to the angle variables. In this note we show some trivial examples associated with angle variables for elliptic and parabolic coordinate systems on the plane.
Saved in:
Date: | 2012 |
---|---|
Main Author: | Tsiganov, A.V. |
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2012
|
Series: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/148470 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Superintegrable Stäckel Systems on the Plane: Elliptic and Parabolic Coordinates / A.V. Tsiganov // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 15 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
Classical and Quantum Superintegrability of Stäckel Systems
by: Błaszak, M., et al.
Published: (2017) -
Superintegrable Oscillator and Kepler Systems on Spaces of Nonconstant Curvature via the Stäckel Transform
by: Ballesteros, A., et al.
Published: (2011) -
Superintegrable Extensions of Superintegrable Systems
by: Chanu, C.M., et al.
Published: (2012) -
Non-Homogeneous Hydrodynamic Systems and Quasi-Stäckel Hamiltonians
by: Marciniak, K., et al.
Published: (2017) -
Stress concentration at an elliptic hole or a parabolic notch in a quasi-orthotropic plane
by: A. Kazberuk, et al.
Published: (2016)