Biocidal activity of the precipitated silica with surface compounds of Ag, Cu and Zn

By modification of the highly dispersed silica surface with amino complexes of silver, copper and zinc from aqueous solution with further heat treatment, silica nanocomposites containing surface compounds of silver, copper and zinc were synthesized. The concentration of the silver in the samples was...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2015
Автори: Bogatyrov, V.M., Galaburda, M.V., Zaichenko, O.M., Tsyganenko, K.S., Savchuk, Ya.I.
Формат: Стаття
Мова:English
Опубліковано: Інститут хімії поверхні ім. О.О. Чуйка НАН України 2015
Назва видання:Поверхность
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/148482
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Biocidal activity of the precipitated silica with surface compounds of Ag, Cu and Zn / V.M. Bogatyrov, M.V. Galaburda, O.M. Zaichenko, K.S. Tsyganenko, Ya.I. Savchuk // Поверхность. — 2015. — Вип. 7 (22). — С. 119-125. — Бібліогр.: 34 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-148482
record_format dspace
spelling irk-123456789-1484822019-02-19T01:25:54Z Biocidal activity of the precipitated silica with surface compounds of Ag, Cu and Zn Bogatyrov, V.M. Galaburda, M.V. Zaichenko, O.M. Tsyganenko, K.S. Savchuk, Ya.I. Физико-химия поверхностных явлений By modification of the highly dispersed silica surface with amino complexes of silver, copper and zinc from aqueous solution with further heat treatment, silica nanocomposites containing surface compounds of silver, copper and zinc were synthesized. The concentration of the silver in the samples was 1-2 wt%, and the copper and zinc - 1-5 wt%. Biocidal activity of the composites was tested against 18 different strains of micromycetes, phytopathogenic bacteria and algae. It was shown, that the highest efficiency is observed in the samples of silica modified with silver/copper and silver/zinc. Модифицированием поверхности высокодисперсного кремнезема амино-комплексами серебра, меди и цинка из водного раствора с последующей термообработкой, синтезированы кремнеземные нанокомпозиты, содержащие поверхностные соединения серебра, меди и цинка. Концентрация серебра в образцах составляла 1–2 %, а меди и цинка – 1–5 %. Биоцидная активность полученных композитов была изучена по отношению к 18 различным штаммам микромицетов, фитопатогенных бактерий и водорослей. Установлено, что наибольшая эффективность наблюдается в образцах кремнезема, модифицированного серебром/медью, а также серебром/цинком. Модифікуванням поверхні високодисперсного кремнезему аміно-комплексами срібла, міді та цинку з водного розчину з наступною термообробкою, синтезовано кремнеземні нанокомпозити, що містять поверхневі сполуки срібла, міді та цинку. Концентрація срібла в зразках становила 1–2 %, а міді та цинку – 1–5 %. Біоцидну активність одержаних композитів вивчали по відношенню до 18 різних штамів мікроміцетів, фітопатогенних бактерій і водоростей. Встановлено, що найбільша ефективність спостерігається в зразках кремнезему, модифікованого сріблом/міддю, а також сріблом/цинком. 2015 Article Biocidal activity of the precipitated silica with surface compounds of Ag, Cu and Zn / V.M. Bogatyrov, M.V. Galaburda, O.M. Zaichenko, K.S. Tsyganenko, Ya.I. Savchuk // Поверхность. — 2015. — Вип. 7 (22). — С. 119-125. — Бібліогр.: 34 назв. — англ. 2617-5975 http://dspace.nbuv.gov.ua/handle/123456789/148482 544.72+615.28 en Поверхность Інститут хімії поверхні ім. О.О. Чуйка НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Физико-химия поверхностных явлений
Физико-химия поверхностных явлений
spellingShingle Физико-химия поверхностных явлений
Физико-химия поверхностных явлений
Bogatyrov, V.M.
Galaburda, M.V.
Zaichenko, O.M.
Tsyganenko, K.S.
Savchuk, Ya.I.
Biocidal activity of the precipitated silica with surface compounds of Ag, Cu and Zn
Поверхность
description By modification of the highly dispersed silica surface with amino complexes of silver, copper and zinc from aqueous solution with further heat treatment, silica nanocomposites containing surface compounds of silver, copper and zinc were synthesized. The concentration of the silver in the samples was 1-2 wt%, and the copper and zinc - 1-5 wt%. Biocidal activity of the composites was tested against 18 different strains of micromycetes, phytopathogenic bacteria and algae. It was shown, that the highest efficiency is observed in the samples of silica modified with silver/copper and silver/zinc.
format Article
author Bogatyrov, V.M.
Galaburda, M.V.
Zaichenko, O.M.
Tsyganenko, K.S.
Savchuk, Ya.I.
author_facet Bogatyrov, V.M.
Galaburda, M.V.
Zaichenko, O.M.
Tsyganenko, K.S.
Savchuk, Ya.I.
author_sort Bogatyrov, V.M.
title Biocidal activity of the precipitated silica with surface compounds of Ag, Cu and Zn
title_short Biocidal activity of the precipitated silica with surface compounds of Ag, Cu and Zn
title_full Biocidal activity of the precipitated silica with surface compounds of Ag, Cu and Zn
title_fullStr Biocidal activity of the precipitated silica with surface compounds of Ag, Cu and Zn
title_full_unstemmed Biocidal activity of the precipitated silica with surface compounds of Ag, Cu and Zn
title_sort biocidal activity of the precipitated silica with surface compounds of ag, cu and zn
publisher Інститут хімії поверхні ім. О.О. Чуйка НАН України
publishDate 2015
topic_facet Физико-химия поверхностных явлений
url http://dspace.nbuv.gov.ua/handle/123456789/148482
citation_txt Biocidal activity of the precipitated silica with surface compounds of Ag, Cu and Zn / V.M. Bogatyrov, M.V. Galaburda, O.M. Zaichenko, K.S. Tsyganenko, Ya.I. Savchuk // Поверхность. — 2015. — Вип. 7 (22). — С. 119-125. — Бібліогр.: 34 назв. — англ.
series Поверхность
work_keys_str_mv AT bogatyrovvm biocidalactivityoftheprecipitatedsilicawithsurfacecompoundsofagcuandzn
AT galaburdamv biocidalactivityoftheprecipitatedsilicawithsurfacecompoundsofagcuandzn
AT zaichenkoom biocidalactivityoftheprecipitatedsilicawithsurfacecompoundsofagcuandzn
AT tsyganenkoks biocidalactivityoftheprecipitatedsilicawithsurfacecompoundsofagcuandzn
AT savchukyai biocidalactivityoftheprecipitatedsilicawithsurfacecompoundsofagcuandzn
first_indexed 2025-07-12T18:49:32Z
last_indexed 2025-07-12T18:49:32Z
_version_ 1837468146129174528
fulltext Поверхность. 2015. Вып. 7(22). С. 119–125 119 UDC 544.72+615.28 BIOCIDAL ACTIVITY OF THE PRECIPITATED SILICA WITH SURFACE COMPOUNDS OF Ag, Cu AND Zn V.M. Bogatyrov1, M.V. Galaburda1, O.M. Zaichenko2, K.S. Tsyganenko2, Ya.I. Savchuk2 1Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, 17 General Naumov Str., Kyiv 03164, Ukraine, e-mail: vbogat@ukr.net 2Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, 154 Acad. Zabolotnoho Str., Kyiv 03143, Ukraine By modification of the highly dispersed silica surface with amino complexes of silver, copper and zinc from aqueous solution with further heat treatment, silica nanocomposites containing surface compounds of silver, copper and zinc were synthesized. The concentration of the silver in the samples was 1-2 wt%, and the copper and zinc - 1-5 wt%. Biocidal activity of the composites was tested against 18 different strains of micromycetes, phytopathogenic bacteria and algae. It was shown, that the highest efficiency is observed in the samples of silica modified with silver/copper and silver/zinc. Introduction It is known that microorganisms have both positive and negative effects on the environment. In particular, there are many causative agents of many diseases in warm- blooded animals and plants, species with toxigenic properties and corrosion activity in different materials and buildings. A malignant bacteria causes significant damages to the human health and therefore to the economics in general. The main tools to combat the harmful actions of microorganisms are antibiotic compounds and chemical agents, including composites those which contains silver, copper, zinc and etc. The biocidal activity of copper, zinc and silver was well known even in ancient times. New directions in study of those composites have appeared due to recent developments in the nanotechnology, which caused an interest in investigation of the bioactivity of the metal and oxides nanoparticles for there use in industry, biotechnology and medicine [1-9]. Special attention is paid to creation of new advanced materials and coatings, resistant to the biodeteriorations or with biocidal activity against the microorganisms. In this regard, an interesting approach is to utilize silica materials (silica gels, zeolites, aerogels, microspheres and etc.) as substrate for bioactive nanoparticles deposition. The bioactivity of metallic silver nanoparticles in various materials was widely studied; furthermore, the possibilities of transformation of the silver nanoparticles into the oxide form on the silica surface and influence of this process on the biocidal activities have been reported [10-16]. The antimicrobial effect of the silica matrix modified with nanoparticles of metals or ions of silver, copper, zinc has been reported [17-22]. Such materials can be used as the bioactive adsorbent alone as well as a part of polymer composites and textile fabrics with biocide properties. Various methods of chemical modification of silica surface with silver, copper and zinc, were previously reported. However, majority of the traditional methods are multi-stage and involves the silver salt reduction to the zero valence state; formation of stabilized sol and precipitating of the obtained nanoparticles in the pores or on the silica surface [23-25]. The possibility of chemical modification of the silica surface with ammine complexes of silver, copper and zinc is extremely perspective to obtain bioactive nanocomposites [26-32]. In case of the fumed silica, this method is simple enough to obtain the composite powder with nanoscale content of the biocidal metals. 120 The aim of this work was to synthesize a highly dispersed solid of the precipitated silica modified with silver, copper and zinc, and to study their bioactive properties against the wide range of microorganisms (micromycetes, algae and bacteria). Materials and methods Precipitated silica NewSil-125 (China), silver nitrate AgNO3 (GOST 1277-75, 99.7%), copper acetate monohydrate Cu(Ac)2·H2O (GOST 5852-70, 98%), zinc acetate tetrahydrate Zn(Ac)2·4H2O (GOST 5823-78 97%), and aqueous solution of ammonia 25% (Chemlaborreaktiv Ltd, Ukraine) were used to prepare modified silica. All chemicals were used without further purification. Ammonia complexes of the metal salts were prepared by dissolving of metal salts in distilled water with further addition of the ammonia solution. Initially, the metal hydroxides precipitate, but with further addition of ammonia the insoluble hydroxide transforms into the transparent solution of metal-ammine complex i.e. silver diammine, copper tetraammine and zinc tetraammine complexes [30, 33]. Utilizing metal-ammine complexes to prepare the silica-based biocide composites allows modification of the precipitated silica with two metals at the same time. In this case, ammonia was added into solution of the two salts in distilled water until transparent solution of metal-ammine complexes was formed. In a typical preparation of the modified silica the ammonia complex of metal was added to 3g of the precipitated silica under stirring at the room temperature in order to obtain a homogeneous suspension. Then the suspension was aged for 0.5 h and placed into the thermostatic oven at 200 °C for 2 hours to evaporate ammonia and to dry the sample. The ratio of the initial components in the synthesis and the calculated content of the metal content in the samples are given in Table 1. Table 1. Composition and reagent consumption for the modification of 3 g of precipitated silica*. Sample Initial salt Salt content, mg Water, ml Aqueous solution of ammonia, ml Metal content, wt% №2 AgNO3 50 9 1 1 №3 AgNO3 100 9 1 2 №4 Cu(Ac)2·H2O 600 8 3 5 №5 Zn(Ac)2·4H2O 130 10 1 1 №6 Zn(Ac)2·4H2O 660 7 4 5 №7 AgNO3/Cu(Ac)2·H2O 100/120 10 1.5 2/1 №8 AgNO3/Zn(Ac)2·4H2O 100/130 10 1.8 2/1 №9 Cu(Ac)2·H2O/Zn(Ac)2·4H2O 120/130 8.5 1.5 1/1 *Sample №1 is the initial precipitated silica NewSil-125 is a white powder with silica content over 98% and values of specific surface area is about 110-140 m2/g. Surface silanol groups of the silica react with amino complexes of the metals in the aqueous solution via ion exchange reaction with the formation of the surface metal amino compounds. A thermal treatment at 200 °C leads to evaporation of ammonia and the subsequent cooling in the ambient condition forms the hydroxo-complexes or chemisorbed molecules of metal hydroxide on the silica surface [30-32]. Obtained samples of silica modified with silver, copper and zinc were tested for biocidal activity against micromycetes of phytopathogenic bacteria and algae. The pristine precipitated silica was used as a blank test (sample №1). 121 In this research 12 cultures of microscopic funguses (8 of them with corrosion activity (Penicillium funiculosum 16721, P. chrysogenum 16719, P. aurantiogriseum 16244, Aspergillus terreus 16184, A. niger 73001, Aspergillus oryzae 16718, Paecilomyces variotii 16724 and Trichoderma viride16516) and 4 with toxic activity (P. urticae 811, Fusarium oxysporum 220, Myrothecium verrucaria 324 and Stachybotrys chartarum 526)) were used to test the biocidal properties of synthesized composites. Stachybotrys chartarum 526 is known as the initiator of the so-called "sick building syndrome" appearance [34]. Along with this, three strains of pathogenic bacteria and three strains of green algae were tested too. The cultures of microscopic funguses and phytopathogenic bacteria are from Ukrainian Collection of Microorganisms (UCM), and cultures of green algae are from National Herbarium of Ukraine (NHU). Biocidal activity was determined by the wells method in Petri dishes using appropriate agar medium at 26 ± 1 °C. Test cultures were introduced into the molten broth (≈40°С) in amounts of ×106, 1×106 and 1×102 cells/ml, for fungi, green algae and phytopathogenic bacteria, respectively. Nanocomposites (10 mg of the powder) were placed in holes on the agar surface in Petri dish. All experiments were performed under sterile conditions and in triplicate. The biocidal efficacy was assessed by measuring of the diameter of the zones of inhibition of culture growth (bright zone) and expressed in mm as the average for three experiments (Table 2 and 3). Results and discussion According to the obtained data (Table 2), the highest inhibition effect on the micromycetes growth has a silver/copper and silver/zinc nanocomposites (samples №№ 2, 3, 7, 8). It should be noted that nanocomposites with high concentration of zinc (sample № 6) shows the selective activity against toxigenic strains of P. urticae 811 and M. verrucaria 324. Moreover, those samples act equally according to the corrosion-active and to the toxigenic strains. Slightly greater sensitivity in the investigated micromycetes was established for Penicillium and Aspergillus. High sensitivity of Penicillium and Trichoderma strains as to copper (sample №4) and zinc (sample№6) must be noted too. Table 2. Antifungal activity of silica nanocomposites containing surface compounds of silver, copper and zinc (diameter of the zones of inhibition, mm) Sample P en ic il li um fu ni cu lo su m 1 67 21 P . c hr ys o- ge nu m 1 67 19 P . a ur an ti o- gr is eu m 1 62 44 A sp er gi ll us te rr eu s 16 18 4 A . n ig er 7 30 01 A . o ry za e 16 71 8 P ae ci lo m yc es v ar io ti i 1 67 24 T ri ch od er m a vi ri de 1 65 16 P en ic il li um u rt ic ae 8 11 F us ar iu m ox ys po ru m 2 20 M yr ot he ci um v er ru ca ri a 32 4 St ac hy bo tr ys c ha rt ar um 5 26 №1 (silica) 0 0 0 0 0 0 0 0 0 0 0 0 №2 30 22 32 18 22 15 16 20 36 18 16 31 №3 33 20 46 26 26 16 19 22 32 28 18 30 №4 15 0 20 0 0 0 0 16 35 24 0 21 №5 0 0 0 0 0 0 0 0 0 0 0 0 №6 20 0 0 0 0 0 0 0 30 0 23 0 №7 52 45 51 28 30 25 30 30 49 23 28 39 №8 30 25 32 22 23 19 20 26 42 25 26 28 №9 0 0 0 0 20 0 0 0 28 0 0 0 122 The improved biocidal activities of the mix-metal samples can be explained by differ in biostatic action. In particular, if the silver composites are characterized by biocidal activity, the others have static activity. It has to be noted that, the active agents together with the suppression of fungal growth inhibited sporogenesis. Using silver together with copper or zinc compounds in the sample synthesis increases the biocidal activity of the final silica composites. All these characteristics of active composites can be utilized in prospective protective agents by incorporating of such composite within the building element structure or into the anticorrosion coating. It opens a way to depress the growth of the Stachybotrys chartarum fungus and to protect the buildings from the so-called "sick building syndrome" by treatment with active nanocomposites. High activity of nanocomposites was shown against to phytopathogenic bacteria and green algae (Table 3), which also gives an opportunity to use them to treat the agricultural crops diseases. A green algae overgrowth of the structures and communications within the buildings at high humidity also can be averted by the active nanocomposites application. Table 3. Biocidal activity of silica nanocomposites containing surface compounds of silver, copper and zinc (diameter of the zones of inhibition, mm). Sample P ec to ba ct er iu m ca ro to vo ru m 8 63 6 P se ud om on as s yr in ga e pv . s yr in ga e 85 23 A gr ob ac te ri um tu m ef ac ie ns 8 62 8 C hl or el la v ul ga ri s 1 90 C . v ul ga ri s 1 91 C . k es sl er i 2 00 №1 (silica) 0 0 0 0 0 0 №2 55 25 33 34 29 24 №3 32 25 31 40 38 25 №4 19 34 20 29 28 23 №5 26 33 14 0 0 0 №6 0 0 22 29 31 27 №7 54 35 41 48 45 42 №8 47 29 34 54 44 53 №9 26 24 19 22 20 18 In prospective this work needs additional studies, in particular extending the range of test cultures and in development of technology of the nanocomposites application. Conclusions A high biocidal efficiency of the precipitated silica modified with silver, copper and zinc has been shown. An increase in the biocidal activity of the modified silica when silver is combined with copper or zinc was discovered. The resulting material can be used as filling compounds for organic and inorganic polymer coatings of the building constructions imparting a high bio-resistance. Acknowledgments VMB and MVG are grateful to European Community, Seventh Framework Programme (FP7/2007–2013), Marie Curie International Research Staff Exchange Scheme (IRSES grant No 612484) for partial financial support of this project. 123 The authors are grateful to Zabolotny Institute of Microbiology and Virology NAS of Ukraine to Department of Physiology and Taxonomy of micromycetes for presented cultures of micromycetes from their collections of microscopic funguses, and to Department of Phytopathogenic Bacteria for presented cultures of phytopathogenic bacteria. We express our gratitude to Department of Phycoogy from M.G. Kholodny Institute of Botany NAS of Ukraine for presented cultures of green algae. References 1. Borkow G., Sidwell R.W., Smee D.F., Barnard D.L., Morrey J.D., Lara-Villegas H.H., Shemer-Avni Y., Gabbay J. Neutralizing Viruses in Suspensions by Copper Oxide- Based Filters // Antimicrob. Agents Chemother. – 2007. – V. 51. – P. 2605–2607. 2. Das D., Nath B.C., Phukon P., Dolui S.K. Synthesis and evaluation of antioxidant and antibacterial behavior of CuO nanoparticles // Colloids Surf. B. – 2013. – V. 101. – 430–433. 3. Karlsson H.L., Cronholm P., Gustafsson J., Möller L. // Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem. Res. Toxicol. – 2008. – V. 2. – P. 1726–1732. 4. Mu Q., David C.A., Galceran J., Rey-Castro C., Krzeminiński Ł., Wallace R., Bamiduro F., Milne S.J., Hondow N.S., Brydson R., Vizcay-barrena G., Routledge M.N., Jeuken L.J.C., Brown A.P. Systematic investigation of the physicochemical factors that contribute to the toxicity of ZnO nanoparticles // Chem. Res. Toxicol. – 2014. – V. 27. – P. 558 – 567. 5. Nowack B., Krug H.F., Height M. 120 years of nanosilver history: implications for policy makers // Environ. Sci. Technol. – 2011. – V. 45. – P. 1177–1183. 6. Warheit D.B., Sayes C.M., Reed K.L. Nanoscale and fine zinc oxide particles: can in vitro assays accurately forecast lung hazards following inhalation exposures // Environ. Sci. Technol. – 2009. – V. 43. – P. 7939–7945. 7. Franklin N.M., Rogers N.J., Apte S.C., Batley G.E., Gadd G.E., Casey P.S., Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility // Environ. Sci. Technol. – 2007. – V. 41. – P. 8484–8490. 8. Wang Z., Lee Y.-H., Wu B., Horst A., Kang Y., Tang Y.J., Chen D.-R. Antimicrobial Activities of Aerosolized Transition Metal Oxide Nanoparticles // Chemosphere. – 2010. – V. 80. – P. 525–529. 9. Xu M., Fujita D., Kajiwara S., Minowa T., Li X., Takemura T., Iwai H., Hanagata N. Contribution of physicochemical characteristics of nano-oxides to cytotoxicity // Biomaterials. – 2010. – V.31. – P. 8022-8031. 10. Rivera-Garza M., Olguín M.T., Garsía-Sosa I., Alcántara D., Rodríguez-Fuentes G. Silver supported on natural Mexican zeolite as an antibacterial material // Microporous Mesoporous Mater. – 2000. – V. 39, №3. – P. 431–444. 11. J. Choma, D. Jamioła, J. Ludwinowicz, M. Jaroniec, Deposition of silver nanoparticles on silica spheres and rods // Colloids Surf., A. – 2012. – V. 411. – P. 74–79. 12. Egger S., Lehmann R.P., Height M.J., Loessner M.J., Schuppler M. Antimicrobial Properties of a novel Silver-Silica Nanocomposite Material // Appl. Environ. Microbiol. – 2009. – V.75. – P. 2973–2976. 13. Flores J.C., Torres V., Popa M., Crespo D., Calderón-Moreno J.M. Preparation of Core- Shell Nanospheres of Silica-Silver: SiO2@Ag // J. Non-Cryst. Solids. – 2008. – V. 354. – P. 5435– 5439. 14. Hagura N., Widiyastuti W., Iskandar F., Okuyama K. Characterization of silica-coated silver nanoparticles prepared by a reverse micelle and hydrolysis–condensation process // Chem, Eng. J. – 2010. –V. 156. – P. 200–205. 15. O. Niitsoo, A. Couzis Facile synthesis of silver core - silica shell composite nanoparticles // J. Colloid Interface Sci. – 2011. – 354 – P. 887–890. 124 16. Zhu M., Qian G., Hong Z., Wang Z., Fan X., Wang M. Preparation and characterization of silica–silver core-shell structural submicrometer spheres // J. Phys. Chem. Solids. 2005. – V. 66. – P. 748–752. 17. Rai M., Yadav A., Gade A. Silver nanoparticles as a new generation of antimicrobials // Biotechnol. Adv. – 2009. –V. 27. – P. 76-83. 18. Ruparelia J.P., Chatterjee A.K., Duttagupta S.P., Mukherji S. Strain specificity in antimicrobial activity of silver and copper nanoparticles // Acta Biomater. – 2008. – V. 4. – P. 707–716. 19. Zielecka M., Bujnowska E., Kępska B., Wenda M., Piotrowska M. Antimicrobial additives for architectural paints and impregnates // Prog. Org.Coat. – 2011. –V. 72. – P. 193–201. 20. Chiericatti C., Basílico J.C., Basílico M.L.Z., Zamaro J.M. Antifungal activity of silver ions exchanged in mordenite // Microporous Mesoporous Mater. – 2014. – V. 188. – P. 118–125. 21. Malachová K., Praus P., Rybková Z., Kozák O. Antibacterial and antifungal activities of silver, copper and zinc montmorillonites // Appl. Clay Sci. – 2011. – V. 53. – P. 642– 645. 22. Top A., Ülkü S. Silver, zinc, and copper exchange in a Na-clinoptilolite and resulting effect on antibacterial activity // Appl.Clay Sci. – 2004. – V. 27. – P. 13–14. 23. Flores J.C., Torres V., Popa M., Crespo D., Calderon-Moreno J.M. Variations in morphologies of silver nanoshells on silica spheres // Colloids Surf., A. – 2008. – V. 330. – P. 86–90. 24. Kundu S., Mandal M., Ghosh S.K., Pal T. Photochemical deposition of SERS active silver nanoparticles on silica gel // J. Photochem. Photobiol., A. – 2004. – V. 162. – P 625–632. 25. Lee J.-M., Kim D.-W., Jun Y.-D., Oh S.-G. Preparation of silica–silver heterogeneous nanocomposite particles by one-pot preparation strategy using polyol process: Size- controlled immobilization of silver nanoparticles // Mater. Res. Bull. – 2006. – V. 41. – P. 1407–1416. 26. Cho J., Salleh N., Blanco C., Yang S., Lee C.-J., Kim Y.-W., Kim J., Liu J. Novel synthetic methodology for controlling the orientation of zinc oxide nanowires grown on silicon oxide substrates // Nanoscale. – 2014. – V. 6. – P. 3861–3867. 27. Ji Z., Yang C., Liu K., Ye Z. Fabrication and characterization of p-type ZnO films by pyrolysis of zinc-acetate–ammonia solution // J. Cryst. Growth. – 2003. – V. 253. – P. 239–242. 28. Mbamara U.S., Akinwunmi O.O., Obiajunwa E.I., Ojo I.A.O., Ajayi E.O.B. Deposition and Characterization of N-doped ZnO Thin Films by MOCVD using Zinc Acetate- Ammonium Acetate Precursor // J. Modern Phys. – 2012. – V. 3. – P. 652–659. 29. Montazer M, Shamei A, Alimohammadi F.// Synthesis of nanosilver on polyamide fabric using silver/ammonia complex // Mater. Sci. Eng., C. – 2014. – V. 38. – P.170– 176. 30. Smith G.W., Jacobson H.W. Characteristics of adsorption of complex metal- ammines and other complex ions of zinc, copper, cobalt, nickel and silver on silica gel // J. Phys. Chem. – 1956. – V. 60. – P. 1008–1012. 31. Trouillet L., Toupance T., Villain Ó., Louis C. In situ characterization of the coordination sphere of CuII complexes supported on silica during the preparation of Cu/SiO2 catalysts by cation exchange // Phys. Chem. Chem. Phys. – 2000. – V. 2. – P. 2005–2014. 32. Tominaga H., Ono Y., Keii T. Spectroscopic study of Cu(II) ions supported on silica gel by cation exchange method // J. Catal. – 1975. – V. 202. – P. 197–202. 33. Dickerson R.E., Gray H.B., Haight G.P. Chemical principles, 3rd edition, chapter 20. London-Amsterdam: The Benjamin/Cummings Publishing Co Inc., 1979. – P. 735–786. 125 34. Singh J., Yu C.W.F., Kim J.T., Building pathology, investigation of sick buildings – toxic moulds // Indoor Built Environ. – 2010. – V. 19. – P. 40–47. БИОЦИДНАЯ АКТИВНОСТЬ ОСАЖДЕННОГО КРЕМНЕЗЕМА С ПОВЕРХНОСНЫМИ СОЕДИНЕНИЯМИ Ag, Cu И Zn В.М. Богатырев1, М.В. Галабурда1, А.М. Зайченко2, Е.С. Цыганенко2, Я.И. Савчук2 1Институт химии поверхности им. А.А. Чуйко Национальной академии наук Украины ул. Генерала Наумова 17, Киев, 03164, Украина, e-mail: vbogat@ukr.net 2Институт микробиологии и вирусологии Национальной академии наук Украины ул. Академика Заболотного154, Киев, 03143, Украина Модифицированием поверхности высокодисперсного кремнезема амино- комплексами серебра, меди и цинка из водного раствора с последующей термообработкой, синтезированы кремнеземные нанокомпозиты, содержащие поверхностные соединения серебра, меди и цинка. Концентрация серебра в образцах составляла 1–2 %, а меди и цинка – 1–5 %. Биоцидная активность полученных композитов была изучена по отношению к 18 различным штаммам микромицетов, фитопатогенных бактерий и водорослей. Установлено, что наибольшая эффективность наблюдается в образцах кремнезема, модифицированного серебром/медью, а также серебром/цинком. БІОЦИДНА АКТИВНІСТЬ ОСАДЖЕНОГО КРЕМНЕЗЕМУ З ПОВЕРХНЕВИМИ СПОЛУКАМИ Ag, Cu ТА Zn В.М. Богатирьов1, М.В. Галабурда1, О.М. Зайченко2, К.С. Циганенко2, Я.І. Савчук2 1Інститут хімії поверхні ім. О.О. Чуйка Національної академії наук України вул. Генерала Наумова 17, Київ, 03164, Україна, e-mail: vbogat@ukr.net 2Інституту мікробіології і вірусології Національної академії наук України вул. Академіка Заболотного 154, Київ, 03143, Україна Модифікуванням поверхні високодисперсного кремнезему аміно-комплексами срібла, міді та цинку з водного розчину з наступною термообробкою, синтезовано кремнеземні нанокомпозити, що містять поверхневі сполуки срібла, міді та цинку. Концентрація срібла в зразках становила 1–2 %, а міді та цинку – 1–5 %. Біоцидну активність одержаних композитів вивчали по відношенню до 18 різних штамів мікроміцетів, фітопатогенних бактерій і водоростей. Встановлено, що найбільша ефективність спостерігається в зразках кремнезему, модифікованого сріблом/міддю, а також сріблом/цинком.