Equivariant Gromov-Witten Invariants of Algebraic GKM Manifolds

An algebraic GKM manifold is a non-singular algebraic variety equipped with an algebraic action of an algebraic torus, with only finitely many torus fixed points and finitely many 1-dimensional orbits. In this expository article, we use virtual localization to express equivariant Gromov-Witten invar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2017
Hauptverfasser: Liu, Chiu-Chu Melissa, Sheshmani, A.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2017
Schriftenreihe:Symmetry, Integrability and Geometry: Methods and Applications
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/148556
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Equivariant Gromov-Witten Invariants of Algebraic GKM Manifolds / Chiu-Chu Melissa Liu, A. Sheshmani // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 29 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-148556
record_format dspace
fulltext
spelling irk-123456789-1485562019-02-19T01:24:48Z Equivariant Gromov-Witten Invariants of Algebraic GKM Manifolds Liu, Chiu-Chu Melissa Sheshmani, A. An algebraic GKM manifold is a non-singular algebraic variety equipped with an algebraic action of an algebraic torus, with only finitely many torus fixed points and finitely many 1-dimensional orbits. In this expository article, we use virtual localization to express equivariant Gromov-Witten invariants of any algebraic GKM manifold (which is not necessarily compact) in terms of Hodge integrals over moduli stacks of stable curves and the GKM graph of the GKM manifold. 2017 Article Equivariant Gromov-Witten Invariants of Algebraic GKM Manifolds / Chiu-Chu Melissa Liu, A. Sheshmani // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 29 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 14C05; 14D20; 14F05; 14J30; 14N10 DOI:10.3842/SIGMA.2017.048 http://dspace.nbuv.gov.ua/handle/123456789/148556 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description An algebraic GKM manifold is a non-singular algebraic variety equipped with an algebraic action of an algebraic torus, with only finitely many torus fixed points and finitely many 1-dimensional orbits. In this expository article, we use virtual localization to express equivariant Gromov-Witten invariants of any algebraic GKM manifold (which is not necessarily compact) in terms of Hodge integrals over moduli stacks of stable curves and the GKM graph of the GKM manifold.
format Article
author Liu, Chiu-Chu Melissa
Sheshmani, A.
spellingShingle Liu, Chiu-Chu Melissa
Sheshmani, A.
Equivariant Gromov-Witten Invariants of Algebraic GKM Manifolds
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Liu, Chiu-Chu Melissa
Sheshmani, A.
author_sort Liu, Chiu-Chu Melissa
title Equivariant Gromov-Witten Invariants of Algebraic GKM Manifolds
title_short Equivariant Gromov-Witten Invariants of Algebraic GKM Manifolds
title_full Equivariant Gromov-Witten Invariants of Algebraic GKM Manifolds
title_fullStr Equivariant Gromov-Witten Invariants of Algebraic GKM Manifolds
title_full_unstemmed Equivariant Gromov-Witten Invariants of Algebraic GKM Manifolds
title_sort equivariant gromov-witten invariants of algebraic gkm manifolds
publisher Інститут математики НАН України
publishDate 2017
url http://dspace.nbuv.gov.ua/handle/123456789/148556
citation_txt Equivariant Gromov-Witten Invariants of Algebraic GKM Manifolds / Chiu-Chu Melissa Liu, A. Sheshmani // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 29 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT liuchiuchumelissa equivariantgromovwitteninvariantsofalgebraicgkmmanifolds
AT sheshmania equivariantgromovwitteninvariantsofalgebraicgkmmanifolds
first_indexed 2025-07-12T19:40:45Z
last_indexed 2025-07-12T19:40:45Z
_version_ 1837471363387883520