Connected Lie Groupoids are Internally Connected and Integral Complete in Synthetic Differential Geometry
We extend some fundamental definitions and constructions in the established generalisation of Lie theory involving Lie groupoids by reformulating them in terms of groupoids internal to a well-adapted model of synthetic differential geometry. In particular we define internal counterparts of the defin...
Gespeichert in:
Datum: | 2017 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут математики НАН України
2017
|
Schriftenreihe: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/148557 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Connected Lie Groupoids are Internally Connected and Integral Complete in Synthetic Differential Geometry / M. Burke // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 27 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSchreiben Sie den ersten Kommentar!