Technological aspects of the robotic TOPTIG surfacing of boiler steel tubes using alloy inconel 625
The research aimed to develop technological parameters of the TOPTIG method-based surfacing (using alloy Inconel 625) of boiler tubes (O 45x5) made of steel 13CrMo4-5 ensuring the obtainment of the iron content on the overlay weld surface below 5%. The research resulted in the development of sets of...
Gespeichert in:
Datum: | 2017 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | Russian |
Veröffentlicht: |
Інститут електрозварювання ім. Є.О. Патона НАН України
2017
|
Schriftenreihe: | Автоматическая сварка |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/148585 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Technological Aspects of the Robotic TOPTIG Surfacing of Boiler Steel Tubes Using Alloy Inconel 625 / Т. Pfeifer, M. Rozanski, W. Grobosz, J. Rykala, I.A. Riabcew2 // Автоматическая сварка. — 2017. — № 5-6 (764). — С. 46-53. — Бібліогр.: 13 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-148585 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1485852019-02-19T01:26:48Z Technological aspects of the robotic TOPTIG surfacing of boiler steel tubes using alloy inconel 625 Pfeifer, T. Rozanski, M. Grobosz, W. Rykala, J. Riabcew, I.A. Пленарные доклады международной конференции «Роботизация и автоматизация сварочных процессов» 12–14 июня 2017 г., Киев, Украина The research aimed to develop technological parameters of the TOPTIG method-based surfacing (using alloy Inconel 625) of boiler tubes (O 45x5) made of steel 13CrMo4-5 ensuring the obtainment of the iron content on the overlay weld surface below 5%. The research resulted in the development of sets of parameters enabling the obtainment of overlay welds characterised by very high quality and the minimum degree of the stirring of the overlay weld metal with the base material. The above named sets of parameters were utilised when making a number of overlay welds on tubes. The research involved macroscopic metallographic tests of overlay welds, the identification of the base material content in the overlay weld, the determination of the chemical composition of the overlay weld surface as well as the performance of microscopic metallographic tests and the microanalysis of the chemical composition. It was ascertained that the TOPTIG technology enabled the making of overlay welds characterised by very high quality and the minimum degree of the stirring of the overlay weld metal with the base material (only 3.28%) and made it possible to obtain an iron content of 2.75% on the overlay weld surface using forced cooling performed inside the tube. Surfacing without cooling led to a significantly higher base material content in the overlay weld (approximately 14%), where the content of iron on the overlay weld surface amounted to 8.47%. Метою дослідження є розробка технологічних параметрів процесу TOPTIG наплавлення (з використанням сплаву INCONEL 625) труб котлів (45х5), виготовлених зі сталі 13CrMo4-5, які гарантують вміст заліза в поверхневому шарі шва нижче 5 %. Було визначено, що технологія TOPTIG дозволяє виконувати наплавочні шви, які характеризуються дуже високою якістю і мінімальним рівнем перемішування з основним металом (вміст заліза становить 2,75% в поверхневому шарі шва за допомогою примусового охолодження). Наплавлення без охолодження призводить до набагато більшого змісту основного металу в шві (приблизно 14%), а вміст заліза в поверхневому шарі шва досягає 8,47% целью исследования является разработка технологических параметров процесса TOPTIG наплавки (с использованием сплава Inconel 625) труб котлов (45х5), изготовленных из стали 13CrMo4-5, которые гарантируют содержание железа в поверхностном слое шва ниже 5 %. Было определено, что технология TOPTIG позволяет выполнять наплавочные швы, которые характеризуются очень высоким качеством и минимальным уровнем перемешивания с основным металлом (содержание железа составляет 2,75 % в поверхностном слое шва с помощью принудительного охлаждения). наплавка без охлаждения приводит к гораздо большему содержанию основного металла в шве (примерно 14 %), а содержание железа в поверхностном слое шва достигает 8,47 %. 2017 Article Technological Aspects of the Robotic TOPTIG Surfacing of Boiler Steel Tubes Using Alloy Inconel 625 / Т. Pfeifer, M. Rozanski, W. Grobosz, J. Rykala, I.A. Riabcew2 // Автоматическая сварка. — 2017. — № 5-6 (764). — С. 46-53. — Бібліогр.: 13 назв. — рос. 0005-111X DOI:https://doi.org/10.15407/as2017.06.08 http://dspace.nbuv.gov.ua/handle/123456789/148585 621.791:621.643.1/.2 ru Автоматическая сварка Інститут електрозварювання ім. Є.О. Патона НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
Russian |
topic |
Пленарные доклады международной конференции «Роботизация и автоматизация сварочных процессов» 12–14 июня 2017 г., Киев, Украина Пленарные доклады международной конференции «Роботизация и автоматизация сварочных процессов» 12–14 июня 2017 г., Киев, Украина |
spellingShingle |
Пленарные доклады международной конференции «Роботизация и автоматизация сварочных процессов» 12–14 июня 2017 г., Киев, Украина Пленарные доклады международной конференции «Роботизация и автоматизация сварочных процессов» 12–14 июня 2017 г., Киев, Украина Pfeifer, T. Rozanski, M. Grobosz, W. Rykala, J. Riabcew, I.A. Technological aspects of the robotic TOPTIG surfacing of boiler steel tubes using alloy inconel 625 Автоматическая сварка |
description |
The research aimed to develop technological parameters of the TOPTIG method-based surfacing (using alloy Inconel 625) of boiler tubes (O 45x5) made of steel 13CrMo4-5 ensuring the obtainment of the iron content on the overlay weld surface below 5%. The research resulted in the development of sets of parameters enabling the obtainment of overlay welds characterised by very high quality and the minimum degree of the stirring of the overlay weld metal with the base material. The above named sets of parameters were utilised when making a number of overlay welds on tubes. The research involved macroscopic metallographic tests of overlay welds, the identification of the base material content in the overlay weld, the determination of the chemical composition of the overlay weld surface as well as the performance of microscopic metallographic tests and the microanalysis of the chemical composition. It was ascertained that the TOPTIG technology enabled the making of overlay welds characterised by very high quality and the minimum degree of the stirring of the overlay weld metal with the base material (only 3.28%) and made it possible to obtain an iron content of 2.75% on the overlay weld surface using forced cooling performed inside the tube. Surfacing without cooling led to a significantly higher base material content in the overlay weld (approximately 14%), where the content of iron on the overlay weld surface amounted to 8.47%. |
format |
Article |
author |
Pfeifer, T. Rozanski, M. Grobosz, W. Rykala, J. Riabcew, I.A. |
author_facet |
Pfeifer, T. Rozanski, M. Grobosz, W. Rykala, J. Riabcew, I.A. |
author_sort |
Pfeifer, T. |
title |
Technological aspects of the robotic TOPTIG surfacing of boiler steel tubes using alloy inconel 625 |
title_short |
Technological aspects of the robotic TOPTIG surfacing of boiler steel tubes using alloy inconel 625 |
title_full |
Technological aspects of the robotic TOPTIG surfacing of boiler steel tubes using alloy inconel 625 |
title_fullStr |
Technological aspects of the robotic TOPTIG surfacing of boiler steel tubes using alloy inconel 625 |
title_full_unstemmed |
Technological aspects of the robotic TOPTIG surfacing of boiler steel tubes using alloy inconel 625 |
title_sort |
technological aspects of the robotic toptig surfacing of boiler steel tubes using alloy inconel 625 |
publisher |
Інститут електрозварювання ім. Є.О. Патона НАН України |
publishDate |
2017 |
topic_facet |
Пленарные доклады международной конференции «Роботизация и автоматизация сварочных процессов» 12–14 июня 2017 г., Киев, Украина |
url |
http://dspace.nbuv.gov.ua/handle/123456789/148585 |
citation_txt |
Technological Aspects of the Robotic TOPTIG Surfacing of Boiler Steel Tubes Using Alloy Inconel 625 / Т. Pfeifer, M. Rozanski, W. Grobosz, J. Rykala, I.A. Riabcew2 // Автоматическая сварка. — 2017. — № 5-6 (764). — С. 46-53. — Бібліогр.: 13 назв. — рос. |
series |
Автоматическая сварка |
work_keys_str_mv |
AT pfeifert technologicalaspectsoftherobotictoptigsurfacingofboilersteeltubesusingalloyinconel625 AT rozanskim technologicalaspectsoftherobotictoptigsurfacingofboilersteeltubesusingalloyinconel625 AT groboszw technologicalaspectsoftherobotictoptigsurfacingofboilersteeltubesusingalloyinconel625 AT rykalaj technologicalaspectsoftherobotictoptigsurfacingofboilersteeltubesusingalloyinconel625 AT riabcewia technologicalaspectsoftherobotictoptigsurfacingofboilersteeltubesusingalloyinconel625 |
first_indexed |
2025-07-12T18:57:03Z |
last_indexed |
2025-07-12T18:57:03Z |
_version_ |
1837468619211014144 |
fulltext |
Роботизация и автоматизация
46 - АВТОМАТИ ЕСКАЯ СВАРКА -
Удк 621.791:621.643.1/.2
TECHNOLOGICAL ASPECTS OF THE ROBOTIC
TOPTIG SURFACING OF BOILER STEEL TUBES USING
ALLOY INCONEL 625
T. PFEIFER1, M. RÓŻAŃSKI1, W. GROBOSZ1, J. RYKAŁA1, I.A. RIABCEW2
1Instytut Spawalnictwa w Gliwicach, Poland, 44–100. Gliwice, ul. Bl. Czeslawa 16–18. E-mail: is@is.gliwice.pl
2E. O. Paton Electric Welding Institute NASY. 11 Kazimir Malevich Str., 03680, Kyiv, Ukraine. E-mail: journal@paton.kiev.ua
The research aimed to develop technological parameters of the TOPTIG method-based surfacing (using alloy Inconel 625) of
boiler tubes (Ø 45x5) made of steel 13CrMo4-5 ensuring the obtainment of the iron content on the overlay weld surface below
5 %. The research resulted in the development of sets of parameters enabling the obtainment of overlay welds characterised
by very high quality and the minimum degree of the stirring of the overlay weld metal with the base material. The above
named sets of parameters were utilised when making a number of overlay welds on tubes. The research involved macroscopic
metallographic tests of overlay welds, the identification of the base material content in the overlay weld, the determination of
the chemical composition of the overlay weld surface as well as the performance of microscopic metallographic tests and the
microanalysis of the chemical composition. It was ascertained that the TOPTIG technology enabled the making of overlay welds
characterised by very high quality and the minimum degree of the stirring of the overlay weld metal with the base material (only
3.28 %) and made it possible to obtain an iron content of 2.75 % on the overlay weld surface using forced cooling performed
inside the tube. Surfacing without cooling led to a significantly higher base material content in the overlay weld (approximately
14%), where the content of iron on the overlay weld surface amounted to 8.47 %. References 13. Tabl. 3. Fig. 8.
K e y w o r d s : robotic surfacing, TOPTIG method, alloy Inconel 625, boiler tubes, waste incineration boilers, Fe content on
the overlay weld surface
Introduction
Power plants fed with fossil fuels and waste
incineration plants used for power generation
must satisfy strict requirements as regards power
boiler components including furnaces, collectors,
superheaters and pipings. The above-named
requirements result from extreme working conditions
of components exposed to abrasion and erosion.
The incineration of waste in boilers results in the
formation of flue gas containing aggressive chlorides
and fluorides, the detrimental effect of which requires
the use of appropriately effective protections from
erosion and corrosion of e.g. tubes of heat exchangers
and combustion chambers. Presently, the service
life of such elements is increased by the surfacing
of layers of nickel alloys, particularly having
the composition of alloy Inconel 625, providing
appropriate creep resistance at high temperature and
corrosion resistance in the aggressive environment
of fluorides and chlorides. Presently used surfacing
methods include gas-shielded metal arc surfacing
(using pulsed current and the low-energy CMT
method), plasma–powder surfacing, laser surfacing
and non-consumable electrode inert gas surfacing
(TIG) [1–13].
One of the primary criteria to be satisfied by a
surfaced coating is low iron content (maximum
5 % in the external zone), a thickness not
exceeding 2.0÷2.5 mm as well as the lack of the
microsegregation of alloying elements in the overlay
weld. Iron content higher than that mentioned above
reduces corrosion resistance, whereas an excessive
thickness increases both the weight of structures
and the costs of surfacing processes. In turn, the
microsegregations of elements, particularly Nb
and Mo, cause the formation of intermetallic phases
decreasing the corrosion resistance of overlay welds
[2, 3, 7, 8].
Technical reference publications contain
information concerning the structure and properties
of overlay welds made using gas-shielded metal arc
surfacing, including the low-energy variant of CMT
method [1–3]. The presented results indicate that,
when welding using arc methods, the satisfaction
of the above-presented requirements needs the
making of a minimum of 2 layers, which extends
the operating time and could lead to the formation of
excessive stresses and strains of surfaced elements
(length of surfaced tubes up to 12 m). The tests
described in publication [1] revealed that it was not
possible to entirely eliminate the microsegregation
of alloy components reducing the service life of
the layers. It was ascertained that as a result of
microsegregation occurring during the solidification
of overlay welds, the cores of dendrites were richer
in Ni, Fe and Cr, whereas the interdendritic areas
were richer in Mo and Nb. During the solidification,
the strongest segregation was that of niobium,
© T. Pfeifer, M. Różański, W. Grobosz, J. Rykała, I.A. Riabcew, 2017
Роботизация и автоматизация
- АВТОМАТИ ЕСКАЯ СВАРКА -
less intense was that of molybdenum, whereas the
segregation of chromium was the least intense.
Individual research revealed that similar results were
obtained using plasma-powder surfacing [10–13]. It
appears that surfacing utilising the CMT and plasma–
powder methods could be alternatively replaced by
TIG surfacing: plasma surfacing with wire feeding
and the surfacing utilising an innovative TIG
method, i.e. TOPTIG (feeding the wire at an angle
of approximately 20° in relation to the electrode),
where the wire is fed either in a continuous or in a
pulsed manner. This article presents the course and
selected results of tests aimed at the determination
of the effect of TOPTIG surfacing on the structure
of overlay welds made of nickel alloy Inconel 625
applied on the base made of steel 13CrMo4-5.
Materials, Test Rig and Testing Methodology
The base material used in the tests had the form
of seamless tubes (ø 45x5.0 mm) made of steel
13CrMo4-5 according to PN-EN 10216-2:2014-
02 (15XM according to GOST4543-71). The
technological tests involved the use of an OK Autrod
NiCrMo-3 solid wire (Inconel 625) having a diameter
of 1.0 mm (ESAB).
The technological tests of the surfacing process
were performed using a station equipped with a
ROMAT 310 robot (Cloos) and a TOPTIG 220DC
machine (Air Liquide Welding).
The technological tests were initiated by the
performance of a number of surfacing tests (simple
overlay welds made on sheets) using various process
parameters and aimed to identify the effect of basic
current, impulse current and of a filler metal wire
feeding rate on the quality, geometry and uniformity
of overlay welds as well as on penetration depth.
More than 60 various sets of parameters were tested.
The further stage of research-related tests concerned
with surfacing performed on tubes made of steel
13CrMo4-5 involved the use of parameters ensuring
the obtainment of the highest quality and the lowest
degree of the stirring of the overlay weld with the
base. The most favourable parameters are presented
in Table 1. The overlay welds were made on the tubes
without cooling performed inside the tubes (items 1-6
Table 1). For comparative purposes, overlay welds
were also made with the forced cooling performed
inside the tube, where the cooling medium was water
(items 7 and 8, Table 1).
After the overlay welds were made on the
tubes, the latter were subjected to macroscopic
metallographic tests and measurements enabling the
calculation of the base material content in the overlay
welds. The macroscopic metallographic photographs
were used to determine the cross-sectional areas
of excess overlay weld metal and of the partially
melted base material as well as to identify the overlay
weld height (W), penetration depth (G) and the base
material content in the overlay weld. The above-
named parameter was determined as the proportion
of the area of penetration in the material to the area of
the entire overlay weld. The overlay weld geometry
measurements were performed using the Autodesk
Inventor Professional 2016 software programme. The
measurement results are presented in Table 2.
The subsequent stage of research involved the
analysis of chemical composition of the overlay weld
surface aimed to determine the content of iron as well
as to measure hardness in the surfaced layer and in
the HAZ. The analysis of the chemical composition
was performed using spark source optical emission
spectrometry and Q4 TASMAN spectrometer
(Bruker). The hardness measurements (Vickers
hardness test) were performed on the cross-sections
of the overlay welds using a KB50BYZ-FA hardness
tester (KB Prütechnik GmbH) and a load of HV 10.
The next stage involved microscopic metallographic
tests, the microanalysis of the cross-sectional chemical
composition and the determination of the surface
distribution of chemical elements. The metallographic
specimens were prepared by grinding utilising SiC
papers having a granularity of 280-1200 followed
by polishing involving the use of diamond pastes
(3 and 1µm) and etching (3g FeCl3, 10ml HCl,
90 ml C2H5OH). The determination of the overlay
weld quality required the use of an Olympus SZX9
stereoscopic microscope (SM) in the dark field at
magnification of up to 500x. The microstructure was
observed using a Hitachi S-3400N scanning electron
microscope (SEM) and the SE (SecondaryElectrons) as
Ta b l e 1 . Selected parameters and their designation
No. Impulse current, A Basic current, A Filler metal wire feeding rate,
m/min
Number
of surfaced layers
Overlay weld
designation on the tube
1 140 100 1.0 1 16/1
2 140 100 1.0 2 16/2
3 140 120 1.2 1 37/1
4 140 120 1.2 2 37/2
5 130 120 1.5 1 41/1
6 130 120 1.5 2 41/2
7 130 120 1.5 1 41/W/1
8 130 120 1.5 2 41/W/2
Роботизация и автоматизация
48 - АВТОМАТИ ЕСКАЯ СВАРКА -
well as the BSE observation techniques at magnification
of up to 2000x.
The microanalysis of the chemical composition
of the surfaced layers was performed using a
Hitachi S-3400Nv scanning microscope provided
with an energy dispersive spectrometer (EDS). The
chemical composition tests were conducted using
an accelerating voltage of 15keV. The analysis of
the chemical composition of the overlay welds was
supplemented with the analysis of changes in the
chemical composition on the line perpendicular to the
overlay weld and the surface distribution of chemical
elements in the fusion area.
Test Results
The calculated content of the base material in the
overlay welds and the height of the overlay welds are
presented in Table 2.
The macroscopic metallographic tests revealed
that the content of the base material in the overlay
weld could be reduced by using two-layer surfacing
or by performing forced cooling inside the tube.
The hardness tests were performed on the cross-
section of the overlay welds in accordance with
the scheme presented in Fig. 1. Selected results are
presented in the graphic form in Fig. 2.
The chemical composition tests were performed
on the overlay weld surface using spark source
optical emission spectrometry. The tests aimed to
determine the effect of surfacing conditions and
parameters on the iron content of the overlay weld
surface. The contents of selected chemical elements
are presented in Table 3.
Ta b l e 3 . Chemical composition of the overlay weld surface
Chemical
composition, %
Specimen designation
16/1 16/2 37/1 37/2 41/1 41/2 41/W/1 41/W/2
C 0.035 0.026 0.041 0.024 0.030 0.020 0.019 0.019
Mn 0.167 0.073 0.236 0.056 0.143 0.033 0.088 0.08
Cr 19.74 20.92 18.74 20.62 20.13 20.51 21.70 21.09
Mo 8.020 8.401 7.399 8.181 7.975 7.988 6.871 8.248
Fe 10.20 4.542 14.77 3.98 8.470 4.290 3.467 2.755
Mg 0.0019 0.0017 0.0022 0.0020 0.0022 0.0023 0.0016 0.015
Nb 3.434 3.577 3.228 3.722 3.383 3.620 0.045 3.438
Ni 58.05 62.08 55.23 62.49 59.50 62.92 63.56 63.64
Ta b l e 2 . Overlay weld height (W), fusion area (Fw), overlay weld area (Fn) and the calculated content of the base material
in the overlay weld (Up)
Overlay weld
geometry Spec. 16/1 Spec. 16/2 Spec. 37/1 Spec. 37/2 Spec. 41/1 Spec. 41/2 Spec. 41/W/1 Spec. 41/W/2
Up, % 13.78 11.04 13.11 8.40 14.24 7.52 5.67 3.28
Fw, mm2 160.6 182.9 120.6 154.3 165.5 150.1 143.3 132.7
Fn, mm2 1004.7 1474.6 799.6 1681.7 995.1 1844.6 1735.5 1662.6
H, mm 2.52 3.64 2.11 3.84 2.81 4.21 2.12 2.66
Fig. 1. Arrangement of hardness measurement points in the
overlay weld and HAZ
Fig. 2. Graphic representation of selected hardness measurement points on the cross-section of overlay welds
Роботизация и автоматизация
49 - АВТОМАТИ ЕСКАЯ СВАРКА -
When analysing the chemical composition of the
overlay weld metal it was ascertained that in terms
of the two-layer overlay welds the content of iron on
the overlay weld surface did not exceed 5% in each
case. However, it should be noted that the necessity
of making another, i.e. the second, overlay weld
significantly extends the production process. In cases
of the one-layer overlay welds, made without the
forced cooling of the tube, in each case the content of
iron on the overlay weld surface exceeded 5 %, often
Fig. 4. Structure of the overlay weld made of alloy Inconel 625 on the tube made of steel 13CrMo4-5, specimen of item 7 of Table
1: a) overlay weld macrostructure (SM), b) overlay weld structure, SEM, SE; mag. 1000x; c) fusion line, SEM, SE; mag. 1000x, d)
fusion line with the visible zone enriched in chromium SEM, SE; mag. 2000x
Fig. 3. Microstructure of the overlay weld (item 7 of Table 1) made of alloy Inconel 625 on the tube made of steel 13CrMo4-5; mag.
200 x
Роботизация и автоматизация
- АВТОМАТИ ЕСКАЯ СВАРКА -
reaching 10 %. In cases of the one and two-layer
overlay welds made on the tubes cooled inside using
flowing water, the content of iron on the overlay
weld surface amounted to 3.46 % and 2.75 %, where
the content of the base material in the overlay weld
amounted to 5.67 % and 3.24 %, respectively.
The microscopic metallographic tests were
performed in the base material area, HAZ, fusion
line and in the one-layer overlay weld made using
parameters of item 7 in Table 1. The tests involved
the use of light and scanning electron microscopy.
Figure 3 presents photographs made using the
light microscope, whereas Figure 4 presents the
Fig. 5. Results of the chemical composition microanalysis (EDS) in the individual zones of the overlay weld; specimen of item 7 of
Table 1
Fig. 6. Linear distribution of chemical elements in the overlay weld fusion line in specimen 41/W/1 (item 7, Table 1)
Роботизация и автоматизация
51 - АВТОМАТИ ЕСКАЯ СВАРКА -
microstructural photographs made using the scanning
electron microscope. Figure 5 presents the results
of the chemical composition microanalysis (EDS)
in the individual zones, Figure 6 presents the linear
distribution of chemical elements, whereas Figure 7
presents the surface distribution of chemical elements
in the overlay weld fusion zone.
Analysis of Test Results
The tests aimed to determine the effect of
TOPTIG surfacing conditions and parameters on
the overlay weld geometry as well as on the content
of the base material in the overlay weld and on the
content of iron on the overlay weld surface. The tests
also aimed at the identification of parameters, the
use of which could ensure the obtainment of an iron
content on the overlay weld surface not exceeding 5
%. The initial technological tests performed on sheets
enabled the identification of parameters ensuring the
obtainment of overlay welds characterised by very
high quality and the base material content in the
overlay weld not exceeding 15 %. The above-named
parameters are presented in Table 1.
The macroscopic metallographic test results and
the calculations identifying the base material content
in the overlay weld revealed that in cases of one-layer
overlay welds designated 16/1, 37/1 and 41/1 (items
1,3 and 5 of Table 1), the content of the base material
in the overlay weld amounted to 13.78, 13.11 and
14.42 % respectively, whereas the iron content on
the surface of the overlay welds amounted to 10.2,
14.47 and 8.47wt. %, respectively, and in each case
exceeded the allowed limit value of 5 %. In cases
of the two-layer overlay welds, the base material
content in the overlay weld in specimens designated
16/2, 17/2 and 41/2 (items 2, 4 and 6 of Table 1)
amounted to 11.04, 8.4 and 7,52 %, respectively,
whereas the iron content on the surface of the
overlay welds amounted to 4.54, 3.98 and 4.29wt.
%, respectively. As can be seen above, in each case
the condition limiting the allowed iron content in the
overlay weld to 5 % was satisfied. However, it should
be noted that the time required to make two-run
overlay welds was unacceptable in terms of industrial
applications. In addition, the reduction of the base
material content in the overlay weld was obtained
by increasing the volume of the filler metal, which,
in turn, significantly increased the cost of surfacing.
The foregoing inspired an attempted reduction of
the degree of stirring of the overlay weld metal
with the base material by using the forced cooling
of the tube with water flowing during the process of
surfacing. The subsequent tests involved the making
of two overlay welds designated as 41/1 and 41/2
(items 7 and 8 of Table 1) subjected to macroscopic
metallographic tests, measurements determining
the base material content in the overlay weld and
measurements of the chemical composition of the
overlay weld surface. The base material content in
the two overlay (one and two-layer) welds amounted
to 5.67 and 3.28 %, respectively. It was possible
to obtain a very shallow penetration depth (below
0.3 mm), which, in turn, enabled the obtainment
of a very low stirring degree. The analysis of the
chemical composition of the overlay weld revealed
that the iron content amounted to 3.47 and 2.75wt.
%, i.e. considerably below the required criterion.
The changes in the base material content in the
overlay weld and the corresponding changes in the
iron content on the overlay weld surface in relation
to surfacing process conditions and parameters are
presented below in Figure 8.
Fig. 7. Surface distribution of chemical elements in the overlay weld fusion zone, specimen no. 41/W/1 (item 7, Table 1)
Роботизация и автоматизация
52 - АВТОМАТИ ЕСКАЯ СВАРКА -
The hardness tests revealed that the hardness in
the overlay weld metal amounted to approximately
274...336 HV10, where the highest value was
obtained in the overlay welds made using the forced
cooling of the tube (310...336 HV10). Such a high
value could be attributed to the fast cooling of the
overlay weld metal as well as the related deformation
of the tube resulting in its (strain) hardening.
Depending on an overlay weld subjected to a test, the
HAZ hardness amounted to approximately 329...394
HV10, where the highest value was obtained in
the overlay welds made using the forced cooling
of the tube and was restricted within the range of
379...394 HV10, i.e. on the boundary of the allowed
hardness amounting to 380 HV10 according to the
requirements of EN ISO 15614-7 specifying the
conditions of welding procedure qualification. The
above-named increased hardness in the HAZ can be
ascribed to the accelerated cooling of the area.
The microscopic metallographic tests revealed
that the base material of the tube made of steel
13CrMo4 was the ferritic-pearlitic structure, typical
of the aforesaid steel grade. In turn, in the heat
affected zone adjacent to the fusion line, the intense
thermal cycle accompanying the process of surfacing
delayed the martensitic transformation. The structure
of the above-named area was composed of martensite
and bainite, responsible for the significant increase
in hardness. The overlay weld microstructure in the
fusion line contained a layer of entirely different
colour than that of the remaining overlay weld area.
The composition of the above-named area was
identified in further tests involving the use of electron
microscopy. In turn, the overlay weld consisted of the
dendritic austenitic structure, typical of alloy Inconel
625, building up orthogonally towards the surface of
the material subjected to surfacing.
The tests performed using electron microscopy
revealed that the differently coloured layer (i.e.
differing from the colour of the overlay weld metal)
observed in the fusion line using the metallographic
tests contained 17 % Cr, 23 % Fe, 52 % Ni, 1.5 %
Nb and 5.5 % Mo. The analysis of the chemical
composition of the overlay weld surface revealed the
following contents of chemical elements: 63.64 % Ni,
21.09 % Cr, 8.25 % Mo, 3.44 % Nb and 2.75 % Fe.
As can be seen, the key criterion requiring that the
iron content on the overlay weld surface be below
5% was satisfied again. The analysis of the chemical
composition of the overlay weld at the half of its
thickness revealed that the contents of the primary
chemical elements amounted to 60.4 % Ni, 21.4 %
Cr, 6.6 % Mo, 3.0 % Nb and 8.2 % Fe and changed
towards the base material to reach 39.9 % Ni, 13.2 %
Cr, 4.1 % Mo, 1.6 % Nb and approximately 40.9 % Fe
in the fusion line.
Conclusions
1. The TOPTIG technology enables the making of
overlay welds characterised by very high quality and
the minimum dilution of the overlay metal with the base
material (at least 3.28 %) as well as the obtainment of the
iron content on the overlay weld surface amounting to
2.75 % (if the forced cooling of the base material is used).
Surfacing without cooling leads to a significantly higher
base material content in the overlay weld (approximately
14 %), where the metal content on the overlay weld
surface amounts to 8.47 %.
2. Single-sided surfacing without forced cooling
does not enable the making of an overlay weld using
alloy Inconel 625, characterised by an iron content of
below 5 % on the overlay weld surface.
3. Single-sided surfacing with forced cooling
favours the formation of the martensitic structure in
the HAZ area and the obtainment of high hardness
(>380HV) values because of the cooling (inside the
tube) involving the use of flowing water. However,
the above-named technological aspect is necessary to
satisfy the criterion of the maximum iron content on
the overlay weld surface amounting to 5 %.
References
1. Rozmus-Górnikowska M. (2014) Badania mikrostruktury
i mikrosegregacji składu chemicznego warstw ze stopu
Inconel 625 napawanych techniką CMT na podłoże ze stali
16Mo3. Przegląd Spawalnictwa., 12, 4–8.
2. Rutzinger B. (2012) Kierunki rozwoju w przemyśle
energetycznym. Zastosowanie napawania metodą CMT w
elektrowniach węglowych. Biuletyn Instytutu Spawalnictwa,
5, 63–66.
3. Rutzinger B. (2014) Wpływ procesu napawania na stopień
wymieszania napoiny wykonanej spoiwem ERNiCrMo-3
(stop typu 625) na podłożu ze stali niestopowej. Ibid., 5,
72–74.
4. Adamiec P., Adamiec J. (2006) Aspekty napawania stopami
Inconel 625 i 686 elementów w kotłach do spalania odpadów.
Przegląd Spawalnictwa, 5-6, 11–14.
5. Nowacki J., Wypych A. (2010) Mikrostruktura i odporność na
wysokotemperaturowe utlenianie napoin nadstopu Inconel 625
na stali niskostopowej. Biuletyn Instytutu Spawalnictwa, 5,
84–87.
Fig. 8. Base material content in the overlay welds (Up) and the
iron content (Fe) on the overlay weld surface
Роботизация и автоматизация
53 - АВТОМАТИ ЕСКАЯ СВАРКА -
6. Jarosiński J., Błaszczyk M., Tasak E. (2007) Napawanie
stali stosowanych w energetyce stopami na osnowie niklu.
Przegląd Spawalnictwa, 1, 30–33.
7. Jarosiński J., Błaszczyk M. (2006) Napawanie stali stoso-
wanych w energetyce stopami na osnowie niklu. Problem
praktycznego pomiaru zawartości żelaza. Spajanie, 2, 18–23.
8. Abioye T.E., McCartney D.G., Clare A.T. (2015) Laser
cladding of Inconel 625 wire for corrosion protection.
Journal of Materials Processing Technology, 217, 232–240.
9. Abioye T.E., Folkes J., Clare A.T. (2013) A parametric study
of Inconel 625 wire laser deposition. Journal of Materials
Processing Technology, 213, 2145–2151.
10. Pfeifer T., Winiowski A. (2014) Badania procesu napawania
i spawania plazmowego oraz badanie procesów dyfuzyjnego
lutowania i lutospawania połączeń różnoimiennych metali
lekkich. Praca badawcza Instytutu Spawalnictwa no. Cf-93
(ST-333).
11. Pfeifer T. (2015) Opracowanie technologii napawania
plazmowego proszkiem o składzie stopu Inconel 625. Praca
badawcza Instytutu Spawalnictwa no. Cf-94.
12. гладкий п. в., переплетчиков е. Ф., рябцев и. а. (2007)
Плазменная наплавка. киев: екотехнология.
13. рябцев и. а., сенченков и. к., турык Э. в. (2015) На-
плавка. Материалы, технологии, математическое моде-
лирование. г. гливице, польша, изд-во силезского поли-
технического института.
т. пфайфер1, м. ружанскі1, в. гробош1,
я. рикала1, І. о. рябцев2
1Інститут зварювання, польща, 44-100,
м. глівіце, вул. Б. чеслава, 16-18. E-mail: is@is.gliwice.pl
2Іез ім. Є. о. патона нан України.
03680, м. київ-150, вул. казимира малевича, 11.
E-mail: office@paton.kiev.ua
техноЛогІчнІ аспекти роБотизованого
TOPTIG напЛавЛення котеЛЬних стаЛевих трУБ
з використанням спЛавУ INCONEL 625
метою дослідження є розробка технологічних параме-
трів процесу TOPTIG наплавлення (з використанням спла-
ву INCONEL 625) труб котлів (45х5), виготовлених зі сталі
13CrMo4-5, які гарантують вміст заліза в поверхневому шарі
шва нижче 5 %. Було визначено, що технологія TOPTIG
дозволяє виконувати наплавочні шви, які характеризуються
дуже високою якістю і мінімальним рівнем перемішування з
основним металом (вміст заліза становить 2,75% в поверх-
невому шарі шва за допомогою примусового охолодження).
наплавлення без охолодження призводить до набагато біль-
шого змісту основного металу в шві (приблизно 14%), а вміст
заліза в поверхневому шарі шва досягає 8,47%.
Ключові слова: роботизована наплавка, метод TOPTIG, сплав
Inconel 625, котельні труби, котли для спалювання відходів,
вміст заліза на поверхні шва
т. пфайфер1, м. ружански1, в. гробош1,
я. рыкала1, и. а. рябцев2
1институт сварки, польша, 44-100,
м. гливице, ул. Б. чеслава, 16-18. E-mail: is@is.gliwice.pl
2иЭс им. е. о. патона нан Украины.
03680, г. киев-150, ул. казимира малевича, 11.
E-mail: office@paton.kiev.ua
техноЛогические аспекты
роБотизированной TOPTIG напЛавки
котеЛЬных стаЛЬных трУБ
с испоЛЬзованием спЛава INCONEL 625
целью исследования является разработка технологических
параметров процесса TOPTIG наплавки (с использованием
сплава Inconel 625) труб котлов (45х5), изготовленных из
стали 13CrMo4-5, которые гарантируют содержание железа
в поверхностном слое шва ниже 5 %. Было определено, что
технология TOPTIG позволяет выполнять наплавочные швы,
которые характеризуются очень высоким качеством и ми-
нимальным уровнем перемешивания с основным металлом
(содержание железа составляет 2,75 % в поверхностном слое
шва с помощью принудительного охлаждения). наплавка без
охлаждения приводит к гораздо большему содержанию ос-
новного металла в шве (примерно 14 %), а содержание железа
в поверхностном слое шва достигает 8,47 %.
Ключевые слова: роботизированная наплавка, метод TOPTIG,
сплав Inconel 625, котельные трубы, котлы для сжигания от-
ходов, содержание железа на поверхности шва
поступила в редакцию 14.04.2017
Ме дународная выставка по сварке и резке
25.09.–29.09.2017 Германия, Дюссельдорф
Тематические разделы выставки
оборудование и технологии для всех видов сварки, наплавки и пайки
оборудование и технологии для термической обработки
материалы для сварки, резки, наплавки, напыления, пайки
средства защиты, технологии безопасности
контроль качества
инструменты
научные разработки в области сварки.
|